
Csound for iOS

Victor Lazzarini and Steven Yi

September 1, 2012

1 Introduction
Welcome to Csound for iOS! This document will discuss the details about
using Csound for iOS.

For those with knowledge of Csound, hopefully you will see that the
value of your knowledge is only enhanced by offering a new platform on
which to create musical software and works.

1.1 Regarding the Csound for iOS Examples Project

This documentation covers discussion of the Csound for iOS API. Users
interested in diving in to see how the API is used may want to download
the Csound for iOS Examples Project which contains a set of examples that
cover different use cases of the API. The code for each example may be
useful in getting you a jump-start into building your own application.

1.2 Regarding the LGPL License

The Csound for iOS includes Csound and libsndfile. These are distributed
as static libraries. Users of the Csound for iOS API must comply with the
licensing requirements of the GNU Lesser General Public License v2.1, which
both libraries use. Please carefully review the license files that accompany
each project (you can view a generic version of the LGPL v2.1 license at
http://www.gnu.org/licenses/lgpl-2.1.html).

2 Getting and Using the Csound for iOS API
The Csound for iOS library is distributed as a Zip release from the Csound
Sourceforge page. The Zip archive includes:

1

http://mega-nerd.com/libsndfile/
http://www.gnu.org/licenses/lgpl-2.1.html

• Statically compiled libcsound.a and libsndfile.a, compiled as universal
binaries for armv6, armv7, and i386 CPU architectures (to work with
both iOS devices and simulators)

• C Headers for the Csound C API

• Objective-C CsoundObj API source

• Documentation

Csound for iOS was chosen to be delivered as pre-compiled libraries and
headers for easy inclusion into projects. After starting a new project, do the
following:

1. Right-click your project and from the context menu choose “Add Files
to [project name]”

2. In the file dialog that opens, navigate to the folder containing the
csound-iOS folder and select the csound-iOS folder. Keep the default
settings of “Create groups for any added folders”. You will likely want
to keep “Copy items into destination group’s folder (if needed)” unse-
lected so that your project will only have a reference to the csound-iOS
folder on disk.

3. Make sure that csound-iOS is added to all of your targets for your
project.

After selecting “Add files” the csound-iOS folders should now be a part of
your project. You will now be able to reference reference both the standard
Csound C API as well as the Objective-C CsoundObj API from your project
code.

3 Introduction to the API

3.1 CsoundObj and Csound API’s

Csound for iOS is released with the standard Csound C API as well as a
custom Objective-C CsoundObj API that has been designed to make devel-
oping on iOS convenient. The CsoundObj API includes methods for binding
widgets to channels (used to communicate to and from Csound), mapping
hardware MIDI to widgets, enabling hardware sensors, and more. For fur-
ther detail, please consult the CsoundObj.h and CsoundObj.m files.

2

While the CsoundObj API has been designed to ease things for iOS devel-
opment and to follow conventions of Objective-C, the decision was made to
not wrap everything in the Csound C API. As C coding is commonly found
to be used within iOS development, we felt it was better to try to cover
the important things that are normally done in Objective-C in CsoundObj,
while delegating the user to the C API for parts of Csound that may not be
used as often. The CSOUND* struct pointer that a CsoundObj class holds
can be accessed via the getCsound method in CsoundObj. For more in-
formation about the Csound C API, consult the csound.h header file within
csound-iOS/headers.

4 Using the CsoundObj API
The CsoundObj API revolves around the Objective-C CsoundObj class.
This class contains a CSOUND* struct pointer and has methods for running
Csound, as well as convenience methods to help aid developers in connect-
ing elements to Csound. By itself, CsoundObj can take in a CSD file and
render it. By using CsoundValueCacheables, objects can interact to read
values from and write values to Csound. Beyond that, extended features
can be accessed by using the Csound C API together with the CSOUND*
struct.

4.1 Designing Csound CSD projects to work with Hosts

To communicate to and from a host program with Csound, you will most
likely use chnset and chnget opcodes. These opcodes will allow you to
read from and write values to a named channel. Your host program will
also be writing to and reading from these same channels. As a byproduct of
using named channels, your CSD will be portable to work on other platforms
(Desktop, Android); porting over apps to/from iOS then will only involve
redoing the application and UI code, while your audio engine (Csound)
should “just work.”

4.2 CsoundValueCacheable for Communicating with Csound

The CsoundObj API has been created to ease communication with Csound
by using objects that implement the CsoundValueCacheable protocol. The
protocol definition is as follows:

Listing 1: CsoundValueCacheable Protocol Definition

3

@protocol CsoundValueCacheable

-(void)setup :(CsoundObj *) csoundObj ;
-(void) updateValuesToCsound ;
-(void) updateValuesFromCsound ;
-(void) cleanup ;

@end

CsoundValueCacheables are used to both read values from Csound as
well as write values to Csound. The lifecycle of CsoundValueCacheables is
as follows:

• setup - this method is called after Csound’s compile call but before
the main performance loop. CsoundValueCacheables should use this
method to cache any channel pointers and any other values they will
need during performance.

• updateValuesToCsound and updateValuesFromCsound - these
methods are called during the Csound performance loop. update-
ValuesToCsound is called before each call to csoundPerformKsmps,
while updateValuesFromCsound is called after each call.

• cleanup - this method is called after Csound has completed its run
and should be used by CsoundValueCacheables to free up any allocated
data and remove references to channel pointers.

By using CsoundValueCacheables, CsoundObj functionality can be ex-
tended to communicate with as many items as you would like. The Csound
for iOS API contains pre-made wrapper classes for common UI classes (UIS-
lider, UIButton, UISwitch) as well as hardware sensors (Accelerometer, At-
titude, Gyroscope). CsoundObj has helper methods for the CsoundValue-
Cacheables that come with the CsoundObj API, as well as the generic ad-
dCsoundValueCacheable and removeCsoundValueCacheable meth-
ods for adding custom CsoundValueCacheables. Please consult these classes
as well as their use in context within the Csound for iOS Examples project.

5 Common CsoundObj API Methods

5.1 Binding Widgets to CsoundObj

The CsoundObj API contains the following methods for binding widgets:

4

Listing 2: Methods for Widget Binding

-(id < CsoundValueCacheable >) addSwitch :(UISwitch *) uiSwitch
forChannelName :(NSString *) channelName ;

-(id < CsoundValueCacheable >) addSlider :(UISlider *) uiSlider
forChannelName :(NSString *) channelName ;

-(id < CsoundValueCacheable >) addButton :(UIButton *) uiButton
forChannelName :(NSString *) channelName ;

These methods allow for easy binding of UISwitches, UISliders, and
UIButtons, and return the CsoundValueCacheable that was created to wrap
the widget. If the design of your app requires that you remove a widget
from being used with CsoundObj, you can use the returned CsoundValue-
Cacheable and pass it to the removeCsoundValueCacheable method. To
bind your own custom widgets, you will need to create your own Csound-
ValueCacheable. There are examples of both using the convenience widget
binding methods as well as custom CsoundValueCacheables in the Csound
for iOS Examples project.

6 Interfacing with Hardware

6.1 Audio Input and Output

CsoundObj has been designed to connect everything necessary for audio
input and output from Csound to CoreAudio. Enabling input and output
depends on what commandline arguments are given when running Csound.
The commandline arguments should be supplied as part of the CSD’sCsOp-
tions section. To enable audio output, use -o dac and to enable audio input,
use -i adc.

6.2 MIDI Hardware Input

MIDI input is supported in two ways: directly to Csound, or indirectly via
Widgets.

6.2.1 Direct MIDI input to Csound

CsoundObj has a property called midiInEnabled. By default this value is
set to NO; setting it to YES will enable MIDI input from CoreMIDI directly
into Csound. This will allow using Csound’s MIDI handling and opcodes to
respond to note and controller data from hardware MIDI devices connected
to your device (currently limited to iPad devices). The Csound for iOS

5

Examples project contains an example calledMIDI Test which demonstrates
a project that is setup to handle MIDI coming from a hardware keyboard.

Note, this flag is read when CsoundObj begins a Csound run. Setting
this to YES while CsoundObj is currently rendering will have no effect.

6.2.2 Using MidiWidgetsManager to Control Widgets

For MIDI controller data, rather than handle it directly in Csound, you
can use the MidiWidgetsManager to map data from channels to UI Wid-
gets. The MidiWidgetsManager uses MidiWidgetWrappers to handle
mapping of controller data and setting values on widgets. Currently, the
MidiWidgetsManager only has one built-in MidiWidgetWrapper for UIS-
lider. To map values to custom widgets, you will need to create your own
implementations of MidiWidgetWrappers.

This alternative to direct MIDI input to Csound allows for MIDI map-
ping without a CsoundObj instance actively rendering. In terms of architec-
ture, MIDI values will map to Widgets, and the values within the Widgets
are what will be connected with Csound. By using this design, the values
in the widget will be the primary source of values across the system and no
synchronization of values is required, whether modified by MIDI or touch
input.

6.3 Accelerometer, Gyroscope, Attitude

CsoundObj has built-in support for three of the more commonly used hard-
ware sensors on iOS devices: Accelerometer, Gyroscope, and Attitude. CsoundObj
has the following methods to enable these features:

Listing 3: CsoundObj Hardware Sensor Methods

-(id < CsoundValueCacheable >) enableAccelerometer ;
-(id < CsoundValueCacheable >) enableGyroscope ;
-(id < CsoundValueCacheable >) enableAttitude ;

When these features are enabled, CsoundValueCacheables that wrap the
sensors will send values into Csound via hardcoded channels:

• Acclerometer

– accelerometerX
– accelerometerY
– accelerometerZ

6

• Gyroscope

– gyroX
– gyroY
– gyroZ

• Attitude

– attitudeRoll
– attitudePitch
– attitudeYaw

Once a sensor has been enabled, you can access those values in Csound
using chnget. For further study, please see the Hardware Test example in
the Examples project.

7 Csound for iOS Examples
The Examples project contains a number of simple examples that illustrate
different aspects of working with Csound for iOS. The following is a brief
description of each of the examples.

7.1 Simple Test 1

Simple example that plays ascending notes. The pitch of the notes can
be altered by using the slider. Also, a UISwitch is used to turn on/off
the rendering of Csound. In the code, you’ll find that the callback that is
connected to the UISwitch shows the basic usage of CsoundObj to render a
CSD that is included as a resource for the project:

Listing 4: Example code showing configuring and starting a CsoundObj

-(IBAction) toggleOnOff :(id) component {
UISwitch * uiswitch = (UISwitch *) component ;
NSLog(@" Status : %d", [uiswitch isOn]);

if(uiswitch .on) {

NSString * tempFile = [[NSBundle mainBundle]
pathForResource :@"test" ofType :@"csd"];

NSLog(@"FILE PATH: %@", tempFile);

[self. csound stopCsound];

7

self. csound = [[CsoundObj alloc] init];
[self. csound addCompletionListener :self];

[self. csound addSlider : mSlider forChannelName :@"
slider "];

[self. csound startCsound : tempFile];

} else {
[self. csound stopCsound];

}
}

7.2 Simple Test 2

This is a generative music example that contains a number of sliders that
affect the rate of notes generated, the duration of notes, and the ADSR
envelope for each note.

7.3 Button Test

This example uses a CSD based on the one used for Simple Test 2, but
depends on the user to trigger a button to generate each note. The two but-
tons in this example show two different ways in which to integrate buttons
with CsoundObj:

1. Using CsoundObj’s addButton method, which will setup a k-rate
channel for Csound. The value will be 0 when the button is not
pressed, and will be 1 for one ksmps period when a button is pressed
(it returns to 0 the following ksmps period).

2. Using a standard button callback, the callback will create a string score
and send that to Csound using CsoundObj’s sendScore method. (See
code below.)

Listing 5: Example code showing sending score text to CsoundObj

-(IBAction) eventButtonHit :(id) sender {
NSString * score = [NSString stringWithFormat :@"i2 0 %f",

[mDurationSlider value]];

[mCsound sendScore :score];
}

8

Note that the second method will read the value from the duration slider
when creating the note, while the first method handles reading the duration
from the channel within the CSD code.

7.4 MIDI Test

This example shows a number of different techniques:

1. In the viewDidLoad, a MidiWidgetsManager is created and used
to map MIDI controller values to sliders.

2. MIDI keyboard and controller input is also routed to Csound using
CsoundObj’s setMidiInEnabled method. This allows using stan-
dard Csound MIDI programming within the context of a Csound for
iOS project. (This has been tested on iPad 1 and 2, using a Korg
NanoKey connected via Apple USB Camera Connection kit, as well
as with MIDI keyboards hooked up to an Alesis I/O Dock.)

3. A custom multi-touch virtual keyboard widget demonstrates how to
track the different touches, map them to keyboard keys, and use send-
Score to turn on and off notes.

For those interested in making virtual instruments, this example may be
useful to use as a starting point for your own projects.

7.5 Ping Pong Delay

This example shows processing audio input in realtime, using a Ping Pong
Delay. The use of audio input is controlled by the standard Csound flag -i
adc that is found in the CSD’s CsOptions section.

7.6 Harmonizer

This example highlights the same techniques as the Ping Pong Delay, but
shows using Csound’s streaming Phase Vocoder to create a harmonizer ef-
fect.

7.7 Hardware Test

This example shows using hardware sensors. For this example, the ac-
celerometer is enabled and values are read by the CSD to affect the pitch of
a vco2 oscillator, as well as cutoff and resonance of a moogladder filter.

9

7.8 Csound Haiku 4

Csound Haiku is a generative art music work by Iain McCurdy. Number
4 from this set of pieces was chosen to exercise what is capable on this
platform.

7.9 Record Test

This example demonstrates the recording feature of CsoundObj. It also in-
cludes a custom metering widget that implementsCsoundValueCacheable
to read values from Csound. Note that the updateValuesFromCsound
reads the minimum necessary values from Csound and then continues fur-
ther calculations off the audio callback thread where updateValuesFrom-
Csound is called. It is important to minimize the amount of processing
done in the audio callback thread and to push all processing to another
thread. This can be done using the standard performSelector method;
upon completing calculations, updates to the UI will need to be done on the
main thread, which is done here using performSelectorOnMainThread.
This pattern is common in audio processing applications.

7.10 Multitouch XY

This example demonstrates a multitouch performance surface. The multi-
touch code maps each touch down and up to a note on and off. It also sends
continous x and y values to Csound. The Csound programming in the CSD
shows a technique for doing individual per-note control data mapping by
dynamically assigning what channels of data each note should read from.

7.11 Waveview

This example demonstrates using a CsoundValueCacheable to read an f-
table from Csound and displaying that table. Note that the WaveView’s
code is doing some optimization to check if it has already loaded. It is also
checking that the table itself has completed loading before trying to grab
any values for the table.

Listing 6: Waveview code demonstrating reading f-tables from Csound

- (void) updateValuesFromCsound
{

if (! tableLoaded) {
NSAutoreleasePool *pool = [[NSAutoreleasePool alloc]

init];

10

CSOUND *cs = [csObj getCsound];
sr = csoundGetSr (cs);
ksmps = csoundGetKsmps (cs);

if ((tableLength = csoundTableLength (cs , 1)) > 0) {

table = malloc (tableLength * sizeof (MYFLT));
csoundGetTable (cs , &table , 1);
tableLoaded = YES;
[self performSelectorInBackground : @selector (

updataDisplayData) withObject :nil];
}

[pool release];
}

}

This example also follows the same pattern as the previous example
where it off-loads calculations in a background thread using performSe-
lectorInBackground, then posts to the main thread to update the user
interface.

7.12 Audio File Test

This examples demonstrates a technique of finding the URL of an AIFF file
that is packaged as a resource with the project and playing that audio file
with Csound. The example sets up an instance of CsoundObj in its view-
DidLoad method, as well as binds a custom UIKnob widget for controlling
the playback pitch of the audio file:

Listing 7: CsoundObj setup code

- (void) viewDidLoad
{

[super viewDidLoad];
self. csound = [[CsoundObj alloc] init];
[self. csound addCompletionListener :self];
NSString * csdPath = [[NSBundle mainBundle]

pathForResource :@" audiofiletest " ofType :@"csd"];
[mPitchKnob setMinimumValue :0.5f];
[mPitchKnob setMaximumValue :2.0f];
[mPitchKnob setValue :1.0f];
[self. csound addValueCacheable : mPitchKnob];
[self. csound startCsound : csdPath];

}

11

The UIKnob widget is custom UIView that is also a CsoundValue-
Cacheable. It uses a hardcoded Csound channel called "pitch". After the
CsoundObj object is setup and started, performance of the audio file is done
in the callback to the Play button press:

Listing 8: Play button callback code

- (IBAction)play :(UIButton *) sender
{

NSString * audioFilePath = [[NSBundle mainBundle]
pathForResource :@" audiofiletest " ofType :@"aif"];

NSString *score = [NSString stringWithFormat :@"i1 0 1
\"%@\"", audioFilePath];

[self. csound sendScore :score];
}

This code finds the path for the audiofiletest.aif file that is included with
the project, and uses that value to construct a score statement to send to
Csound.

7.13 Console Output

This example shows how to use an Objective-C selector as a message callback
for Csound through the CsoundObj. In the example’s run method, the
call to CsoundObj’s setMessageCallback with both the selector to call
and the target object is used to route Csound’s messages to the example’s
UITextView:

Listing 9: Example of setting message callback

[self. csound setMessageCallback : @selector (
messageCallback :) withListener :self];

The message callback selector handles formatting the Csound message
using typical C code one will find when using message callbacks with Csound:

Listing 10: Message Callback Selector Code

- (void) messageCallback :(NSValue *) infoObj
{

NSAutoreleasePool *pool = [[NSAutoreleasePool alloc]
init];

Message info;
[infoObj getValue :& info];
char message [1024];
vsnprintf (message , 1024 , info.format , info. valist);
NSString * messageStr = [NSString stringWithFormat :@"%s",

message];

12

[self performSelectorOnMainThread : @selector (
updateUIWithNewMessage :)

withObject : messageStr
waitUntilDone :NO];

[pool drain];
}

Note: after the message is formatted and converted into an Objective-C
NSString from a C char*, a performSelectorOnMainThread is used to
update the UI with the message text. The callback from Csound will not
be on the main thread. This step is therefore required as all modifications
to the user interface must be done on the main thread.

7.14 Pitch Shifter

This example uses the PVS opcodes to perform pitch shifting on a signal
coming in from the microphone on the device. It uses a custom UIControlXY
widget that allows controlling the mix of the wet and dry signal along the
x-axis and the amount of pitch shifting along the y-axis.

8 Conclusion
We hope that this document has helped you to become familiar with the
design and usage of the Csound for iOS API. The example Objective-C and
Csound CSD code should hopefully give you a good starting point for your
own musical projects, and we encourage you to take these examples and run
with it. We look forward to hearing your questions and feedback on this
API, and most of all, look forward to seeing what you will create with all of
this. Best of luck and enjoy!

13

	Introduction
	Regarding the Csound for iOS Examples Project
	Regarding the LGPL License

	Getting and Using the Csound for iOS API
	Introduction to the API
	CsoundObj and Csound API's

	Using the CsoundObj API
	Designing Csound CSD projects to work with Hosts
	CsoundValueCacheable for Communicating with Csound

	Common CsoundObj API Methods
	Binding Widgets to CsoundObj

	Interfacing with Hardware
	Audio Input and Output
	MIDI Hardware Input
	Direct MIDI input to Csound
	Using MidiWidgetsManager to Control Widgets

	Accelerometer, Gyroscope, Attitude

	Csound for iOS Examples
	Simple Test 1
	Simple Test 2
	Button Test
	MIDI Test
	Ping Pong Delay
	Harmonizer
	Hardware Test
	Csound Haiku 4
	Record Test
	Multitouch XY
	Waveview
	Audio File Test
	Console Output
	Pitch Shifter

	Conclusion

