
.

i

ii

A Csound Tutorial

Michael Gogins

gogins@pipeline.com

June 7, 2007

Contents

1 Introduction 1

2 Getting Started 3
2.1 On Windows . 3

2.1.1 Obtaining Csound . 3
2.1.2 Installing Csound . 4
2.1.3 Con�guring Csound . 9
2.1.4 O�-Line Rendering . 12
2.1.5 Real-Time MIDI Performance 17

2.2 On Linux . 21
2.3 On Apple . 21

3 Writing Orchestras and Scores 23
3.1 Signal Flow Graphs . 23
3.2 How Csound Works . 24

3.2.1 Csound Files . 24
3.2.2 Performance Loop . 25

3.3 Writing Your First Piece . 26
3.3.1 Simple Sine Wave . 28
3.3.2 Simple Sine Wave, De-Clicked 30
3.3.3 Simple Sine Wave, De-Clicked, ADSR Envelope 31
3.3.4 Frequency Modulation, De-Clicked, ADSR Envelope 31
3.3.5 Frequency Modulation, De-Clicked, ADSR Envelope, Time-

Varying Modulation . 32
3.3.6 Frequency Modulation, De-Clicked, ADSR Envelope, Time-

Varying Modulation, Stereo Phasing 33
3.3.7 MIDI Performance . 33

4 Using CsoundVST 37
4.1 Con�guring CsoundVST . 37
4.2 Using CsoundVST . 38

4.2.1 Create a Cubase Song . 40
4.2.2 Create an Instance of CsoundVST 40
4.2.3 Load a Csound Orchestra . 42
4.2.4 Con�gure the Orchestra for VST 42
4.2.5 Compile the Orchestra . 43
4.2.6 Track Setup . 44

iii

Contents

4.2.7 MIDI Channel Setup . 44
4.2.8 Write Some Music . 45

5 Python Scripting 47
5.1 Running Csound from Python . 48
5.2 Generating a Score . 49
5.3 Varying the Parameters . 52

A Extra Features and Their Requirements 53

B Helper Applications 55
B.1 Audio Editors . 55

B.1.1 Audacity . 55
B.2 Text Editors . 55

B.2.1 Emacs . 55
B.2.2 SciTE . 55

B.3 Composing Environments . 55
B.3.1 athenaCL . 56
B.3.2 Blue . 56
B.3.3 CsoundVST . 56
B.3.4 Common Music . 56
B.3.5 Pure Data . 56

B.4 Programming Languages . 56
B.4.1 C/C++ . 56
B.4.2 Java . 57
B.4.3 Lisp . 57
B.4.4 Lua . 57
B.4.5 Python . 57

C Audio Quality 59

iv

List of Figures

2.1 Download Page . 3
2.2 Windows Installer . 5
2.3 Csound License . 5
2.4 Csound Location . 6
2.5 Csound Menu Location . 6
2.6 Csound Installing . 7
2.7 Installation Completed . 7
2.8 Csound Start Menu . 8
2.9 Csound GUI . 8
2.10 Con�guring csound5gui . 11
2.11 Windows Console . 13
2.12 Command-Line Rendering . 15
2.13 General Options . 16
2.14 GUI Rendering . 17
2.15 Playing Output Sound�le . 18
2.16 Available Interfaces . 20
2.17 MIDI Performance . 21

3.1 tutorial2.csd . 30
3.2 Playing tutorial2.csd Live . 35

4.1 Importing CsoundVST . 37
4.2 CsoundVST Plugin Path . 38
4.3 CsoundVST Loaded . 39
4.4 Creating a New Project . 40
4.5 Creating a New Track . 41
4.6 Creating a New Instance of CsoundVST 41
4.7 Loading an Orchestra . 42
4.8 Compiled Orchestra . 44
4.9 Channel Setup . 45
4.10 Scoring with Csound . 46

5.1 Running Csound with Python in Idle 50
5.2 Running Csound with Python in SciTE 52

v

List of Figures

vi

1. Introduction

In the words of its author, Barry Vercoe, Csound [1] is a �sound processing language.�
Technically speaking, Csound is a general-purpose, user-programmable software syn-
thesis system (SWSS). Like most SWSS, Csound uses Max Mathews' original 1957
unit generator design [2]. However, Csound was the �rst SWSS to be written in the
C programming language [3]. Being written in C, which is the most e�cient and
most portable high-level language, and also very widely used, has ensured Csound's
survival and growth.
Vercoe wrote Csound at the Massachusetts Institute of Technology in 1984. Ever

since then, Csound has received contributions from researchers, programmers, and
musicians all over the world. Csound runs on Unix, Linux, Windows, the Macin-
tosh, and other operating systems. Csound can be extended by writing plugin unit
generators, and Csound itself runs as a VST plugin. Csound can be programmed
in C, C++, Java, Lisp, Lua, and Python. Csound is taught in a number of leading
universities and conservatories. Books have been written on how to use it [4, 5, 6].
Csound can be compiled to use double-precision �oating point audio samples for the
highest sound quality.
In short, Csound must be considered one of the most powerful musical instruments

ever created.

Csound is, perhaps, harder to use than such competing programmable synthe-
sizers as SuperCollider [7], Max [8], or Reaktor [9]. One di�culty is that Csound
was written a generation ago as a Unix application, and is controlled by dozens of
arcane command-line options (although, precisely because it is older, Csound runs
faster and has more unit generators). Another di�culty is that Csound lacks some
convenient features of other high-level programming languages.
Still, once you learn a few things, Csound is not really so hard to use. The sound

processing language turns out to be simple, the documentation is not so bad, Csound
always tries to tell you what it is doing (or why it is not doing what you told it)...
and the power begins to unfold.
The purpose of this tutorial is to teach you those often neglected �rst few things.

There are three introductory sections, one each for Windows (Section 2.1), Linux
(Section 2.2), and Apple computers (Section 2.3), that lead you, step by step,
through obtaining, installing, con�guring, and running Csound (also see the Csound
Reference Manual [10]). Then follow chapters on writing your own orchestras and
scores (Chapter 3), using CsoundVST as a VST plugin in a studio sequencer (Chap-
ter 4), and writing Python scripts to do algorithmic composition using the Csound
application programming interface (API) (Chapter 5). Finally, there is a list of
software required to use the extra features of Csound (Appendix A), a list of other
helper applications and languages for Csound (Appendix B), and some advice on
how to achieve good sound quality with Csound (Appendix C).

1

1. Introduction

2

2. Getting Started

This chapter contains the same information � how to obtain, install, con�gure, and
run Csound � repeated for each of the main personal computer operating systems
in use today: Windows, Linux, and Macintosh OS X.

2.1. On Windows

2.1.1. Obtaining Csound

Go to http://csound.sourceforge.net/ using your Web browser. Click on the
Main Download page link on that page. On the download page, click on the
link to the csound5 package. You will see a list of releases. At the time this
was written, the most recent downloadable version of Csound for Windows is 5.03.
You will see a csound5.03 link on the page. Click on that, and it will expand
to show two programs: Csound5.03-win32-d.exe and Csound5.03-win32-f.exe.
Both of these programs are Windows installers for Csound 5.03 (Figure 2.1). For
later versions and releases, substitute the actual version number for 5.03 in the links
and �lenames.

Figure 2.1.: Download Page

3

http://csound.sourceforge.net/

2. Getting Started

Csound5.03-win32-f.exe installs a version of Csound that has been compiled to
use 32-bit �oating point numbers internally to represent audio samples. As a result,
it runs about 15% faster than Csound5.03-win32-d.exe.
Csound5.03-win32-d.exe installs a more complete version of Csound, which has

been compiled to use 64-bit �oating point numbers for audio samples, and which
includes opcodes for making instruments based on Perry Cook's Synthesis Toolkit in
C++ [11], and for using Kelly Fitz and Lippold Haken's Loris system for doing sound
modeling, morphing, and manipulation using the Reassigned Bandwidth-Enhanced
Additive Sound Model [12]. Also, Csound5.03-win32-d.exe is a slightly more ac-
curate synthesizer than Csound5.03-win32-f.exe [13].
If you are putting on live shows using Csound with complex instruments, and

need extra e�ciency, download Csound5.03-win32-f.exe. Otherwise, you will be
better o� with Csound5.03-win32-d.exe. The rest of this tutorial assumes you
have chosen Csound5.03-win32-d.exe.
Click on the link to Csound5.03-win32-d.exe. Your Web browser should now

take you to a Web page listing mirrors from which you may download the installer.
Click on the link to a mirror, and your browser should automatically begin to down-
load the �le to your computer's hard disk. Make a note of where the download has
been saved on your hard disk.

2.1.2. Installing Csound

Csound5.03-win32-d.exe comes with a number of extra features that require other
software to work. These extras and their requirements are listed in Appendix A.
Please note: if you do not install any of this other software, the standard features

of Csound will still work!

To install Csound, simply run the installer program. It will display a dialog box
(Figure 2.2).
Click on the Next > button to proceed. You should now see the Csound license

agreement (Figure 2.3). You must click on the I Agree button to indicate your
acceptance of the Csound license before you can install Csound.
Tell the installer where to put Csound. Although the default location is the

standard Windows Program Files directory, Csound may actually work better if
you install it in a directory without any spaces in the pathname, such as C:\Csound
(Figure 2.4).
Tell Csound where to put the Windows Start Menu folder for Csound. You can

skip this step if you want, but I recommend that you accept the default location
(Figure 2.5).
Click on the Install button. The installer will now unpack and install Csound in

your selected location (Figure 2.6). When the installer has �nished, you should see
the message shown in Figure 2.7.
Once Csound has been installed, open the Windows Start Menu, where you

should �nd a Csound submenu containing various Csound programs and documen-
tation (Figure 2.8).
Try running csound5gui, which is a relatively user-friendly front end for Csound

with a basic graphical user interface (Figure 2.9).

4

C: Csound

2.1. On Windows

Figure 2.2.: Windows Installer

Figure 2.3.: Csound License

5

2. Getting Started

Figure 2.4.: Csound Location

Figure 2.5.: Csound Menu Location

6

2.1. On Windows

Figure 2.6.: Csound Installing

Figure 2.7.: Installation Completed

7

2. Getting Started

Figure 2.8.: Csound Start Menu

Figure 2.9.: Csound GUI

8

2.1. On Windows

2.1.3. Con�guring Csound

This section assumes that you have installed Csound in the C:\Csound directory. In
the following, replace this with your actual installation directory.

Con�guring .csoundrc

Using a text editor (not a word processor!)1, take a look at the C:\Csound\.csoundrc
�le. This �le provides default command-line options that take e�ect each time you
run Csound, unless you provide another value for the option. As installed, it reads:

-d -m135 -H0 -s -W -o dac -+rtaudio=pa -b 128 -B 2048 --expression -opt

The meaning of these options is as follows:

-d Do not show graphs of function tables.

-m135 Print informational messages about audio amplitude, audio samples out of
range, warnings, and errors, using color codes.

-H0 Do not print a heartbeat at each kperiod.2

-s Use 16-bit short integers for audio samples.

-W Use the standard Microsoft WAV format for sound�les.

-o dac Send real-time audio output to your computer's default audio interface (i.e.,
digital-to-audio converter).

-+rtaudio=pa Use the PortAudio driver for real-time audio (works on Windows,
Linux and Apple).

-b 128 The number of audio sample frames3 in Csound's software bu�er.

-B 2048 The number of audio sample frames in the audio interface's hardware
bu�er. This should be a small (e.g. 2 to 10) integral multiple of -b.

1Do not use the default text editor on Windows, which is Notepad! Csound �les typically
have Unix line endings (linefeed only), whereas Notepad only works properly with Windows
line endings (linefeed plus carriage return). I recommend that you install and use SciTE
[14], a general-purpose text editor for which you can get Csound orchestra language syn-
tax coloring. You can obtain Csound API and orchestra language syntax coloring prop-
erties from http://solipse.free.fr/Api_&_csound.properties/csound.api and http://

solipse.free.fr/Api_&_csound.properties/csound.properties, respectively. Then in
your global options �le, around line 539 add a new line Csound|orc||\ and around line 611
add a new line import csound. Line numbers are very approximate, but you should see similar
statements for other languages in the correct locations. You can even run Csound from SciTE.
If you must use an existing Windows program, use WordPad, not Notepad, and be sure to save
your work as a plain text �le with the proper �lename extension.

2A kperiod is one Csound control sample, during which Csound computes 1 or more audio sample
frames. By computing anywhere from 10 to a hundred or so sample frames per kperiod, Csound
can run much more e�ciently.

3An audio sample is one number. An audio sample frame consists one number for each channel
of an audio signal. When people say �sample rate,� they usually mean �sample frame rate.�

9

C: Csound
C: Csound .csoundrc
http://solipse.free.fr/Api_&_csound.properties/csound.api
http://solipse.free.fr/Api_&_csound.properties/csound.properties
http://solipse.free.fr/Api_&_csound.properties/csound.properties

2. Getting Started

�expression-opt Tell the Csound orchestra language compiler to optimize arith-
metic and logic expressions.

For the complete meaning of all Csound options, see the reference manual [10]. The
above options should work for real-time audio output on all operating systems and
computers. For now, there is no need to change these options, but later you may
wish to modify them according to what you learn about your computer and audio
interface. The layers of bu�ering in Csound work as follows:

1. Every ksmps sample frames, Csound reads audio from the spin bu�er into
the in family of opcodes; gets score events from the score, MIDI, and other
real-time control queues and dispatches those events to instrument instances;
writes audio from the out family of opcodes to the spout bu�er; and copies the
spout bu�er to the �software� or -b bu�er. Consequently, ksmps determines
the minimum granularity of event and audio processing.

2. Every -b sample frames, Csound copies the �software� or -b bu�er to the
�hardware� or -B bu�er. If -b is a multiple of ksmps, then if Csound is late
producing a spout bu�er, the -b bu�er contains enough audio to give Csound
a chance to catch up during the next ksmps.

3. Every -B sample frames, the sound card plays the �hardware� or -B bu�er. If
-B is a multiple of -b, then if Csound is late producing a -b bu�er, the -B

bu�er still contains enough audio so that the sound card can keep playing while
Csound catches up during the next -b period. Consequently, -B determines
the minimum latency of audio input and output.

Csound con�guration is a�ected by a number of environment variables,4 which
are all documented in the Csound manual [10].

Con�guring csound5gui

Run csound5gui. Click on theOptions menu button, and select theGeneral item,
which will display a dialog box for con�guring csound5gui (Figure 2.9).
I suggest that you change the default values for Text editor and Sound editor

to helper applications I think you will �nd much more useful. I recommend SciTE
[14] as the text editor,5 and Audacity [15] as the sound editor, but there are other
options (see Appendix B).

4 An environment variable is a string in the form NAME=value that the user sets, and the operating
system remembers and passes along to programs when they start. The program can look up the
value that has been assigned to the variable in order to locate directories and �les, set numbers,
and so on. The proper way to set environment variables depends on your version of Windows.
On Windows XP, go to the Start Menu, Settings item, Control Panel item, System icon,
Advanced tab, Environment Variables button to bring up a dialog box where you can
create, edit, or delete persistent environment variables.

5If you use SciTE, be sure to con�gure it to use linefeeds only for line endings, by using the
Options menu, Open Global Options File command to put the line eol.mode=LF into
SciTE's global options �le.

10

2.1. On Windows

Figure 2.10.: Con�guring csound5gui

11

2. Getting Started

2.1.4. O�-Line Rendering

O�-line rendering is rendering music as a sound�le, before you hear it. For complex
pieces, this can take much longer than listening to the �nished piece. This concept
may be unfamiliar to you, but it does give you the power to make music that would
otherwise be completely impossible.
Some other music software can do o�-line rendering under one name or another.

Cubase, for example, calls it �Export Audio Mixdown.� Csound was originally de-
signed only for o�-line rendering. We will use o�-line rendering to create your �rst
Csound piece, because it does not require any con�guration for your audio interface
� it is guaranteed to work!
Csound is capable of state-of-the-art audio quality, equal to or better than the best

recording gear. For more discussion of how to achieve this quality, see Appendix
C. The short piece you are about to render has been modi�ed to render at high
resolution, so it should serve as something of a demonstration of what Csound can
do.
As you may have gathered, there many ways of running Csound. The two ways

we are concerned with here are the original way, as a command-line program,6 and
as a GUI program. We will run the piece both ways.

Using the Command Line

Open a console window (Windows Start menu, Run item, type cmd into the Open:
�eld, press the ENTER key). Type C: [ENTER] ([ENTER] means press the ENTER
key) or whatever the drive is where you installed Csound). Type cd \Csound [ENTER]

to navigate to the Csound directory. Type csound [ENTER] to run Csound (Figure
2.11).
The text that you see consists of messages that Csound has printed out. You did

not supply the required command-line options to Csound, so it has printed out a sum-
mary of the options to help you. To see even more options, type csound --help [ENTER].
Now, type csound examples\xanadu-high-resolution.csd [ENTER]. The .csd

�le contains in plain text, like all .csd �les, a Csound score, a Csound orchestra for
rendering the score, and command-line options in the <CsOptions> tag to control
the rendering. The meanings of the options for this piece are as follows:

-R Rewrite the header of the output sound�le periodically, so that if you stop
Csound in mid-performance, or it crashes, you should still be able to hear
as much of the sound�le as was written before Csound stopped.

-W Use the standard Microsoft WAV sound�le format.

-Z Dither the signal just before writing to the output. Dither is noise that is applied
to the signal in order to mask and hide other noise.

6What is the command line? Every operating system has one. It is a �console window� that has a
prompt where the user can type in text commands. On Windows, you can open the console by
going to the Start menu, selecting the Run item, typing cmd in the Open: �eld, and clicking
the OK button. When you see the prompt, type dir and press the ENTER key as an example
of executing a command.

12

2.1. On Windows

Figure 2.11.: Windows Console

13

2. Getting Started

-f Use �oating-point numbers to represent audio samples. Float samples have the
greatest dynamic range and precision.

-o xanadu.wav Output to a sound�le named xanadu.wav.

The messages (Figure 2.12) list the instruments that Csound has compiled, e.g.
instr 1, instr 2, and so on (more on this later), then some other information
about how Csound has compiled the orchestra and score in the .csd �le, then the
name of the output sound�le. Then come messages indicating the progress and
status of rendering, e.g. new alloc for instr 1: indicates that a new instance of
instrument 1 has been created to satisfy the demands of the score. Messages starting
with B, e.g.

B 15.500 .. 22.500 T 22.500 TT 22.500 M: 9286.3 9200.8

B 22.500 .. 22.600 T 22.600 TT 22.600 M: 5744.3 6443.3

B 22.600 .. 22.700 T 22.700 TT 22.700 M: 7632.9 7294.0

B 22.700 .. 22.800 T 22.800 TT 22.800 M: 8855.0 7862.5

B 22.800 .. 22.900 T 22.900 TT 22.900 M: 8845.9 7613.5

B 22.900 .. 23.000 T 23.000 TT 23.000 M: 8541.2 7858.1

indicate blocks of synthesis, including the time within a marked section of the score
T, the total time for the whole score TT, and the mean amplitude M of the signal in
each channel of the audio output during that time. These amplitudes are critical, for
Csound can easily produce a signal that is so loud it clips. Every time this happens,
Csound prints a warning message. A new block begins for each new score event.

There are various ways to now actually hear the piece. All installations of Win-
dows feature the Windows media player, which can play high-resolution sound�les,
and which is usually accessible on the Windows task bar. Open the media player,
and use the File menu, Open command to navigate to the Csound directory and
open the xanadu.wav �le. You can now play the piece, although of course it will
sound much better if you have an audio interface running into monitor speakers or
good home stereo speakers. The piece may also sound good through headphones
plugged directly into your computer, though that will depend on the quality of
your computer's audio systems � newer computers have much better sound. Media
Center PCs may even have high-resolution audio built in.

Using csound5gui

Now render the same piece using a GUI front-end to Csound. Run csound5gui.
Click on the square button with three dots next to the Orchestra/CSD text �eld.
This will open a �le dialog. Navigate to the C:\Csound\examples directory and
load the xanadu-high-resolution.csd �le. Click on the Edit button next to the
Orchestra/CSD �eld. You can arrange or tile the control window, the messages
window, and the editor so that you can move back and forth for more e�cient
working.

csound5gui will, by default, use the Csound options set in the <CsOptions> tag of
the .csd �le. However, you can override these options manually. Use the Options
pop-up menu, Csound... item, to bring up the Csound performance settings
dialog (Figure 2.13).

14

xanadu.wav
C: Csound examples
xanadu-high-resolution.csd

2.1. On Windows

Figure 2.12.: Command-Line Rendering

15

2. Getting Started

Figure 2.13.: General Options

1. Select the General tab, and type 88200 into both the Sample rate and the
Control rate �elds (corresponds to the -r and -k options),

2. Select the Sound I/O tab, and type xanadu.wav into the Output �le �eld
(corresponds to the -o option).

3. Use the File type combo box, and select the wav item to produce a Windows
WAV format sound�le (corresponds to the -W option).

4. Use the Sample format combo box and select the float item, to write
�oating-point samples (the highest resolution commonly used) in the output
sound�le (corresponds to the -f option).

5. Enable the Rewrite header checkbox, to ensure that after every kperiod,
Csound will rewrite the output sound�le header, so that the sound�le can be
played even if Csound stops in mid-rendering (corresponds to the -R option).

6. Enable theDither checkbox, to cause the �nal audio output to be dithered just
before it is written to the output, which masks noise introduced by arithmetic
errors and other processing artifacts (corresponds to the -Z option).

7. If you want ID3 tags encoded into the sound�le header for copyright or master-
ing purposes, enter your data in the Sound�le tags section (the �elds corre-
spond to the -+id_artist, -+id_comment, -+id_comment, -+id_copyright,
-+id_date, -+id_software, and -+id_title options).

16

2.1. On Windows

Figure 2.14.: GUI Rendering

Now close the Csound performance settings dialog, and click on the Play/-
Pause button (Figure 2.14).

As the piece renders, the Current score time �eld in csound5gui displays the
elapsed score time � not the elapsed real time. For real-time performance, score
time is the same as real time; for o�-line rendering, score time can run either faster
or slower than real time. At the same time, Csound prints messages to the Csound
console messages window.
You can stop rendering at any time by click on the Stop button. After stopping,

you can restart. You can even restart part-way into the score, by entering a value
in seconds into the Goto �eld and clicking on the Goto button.

When the piece has �nished rendering, you can hear it by clicking on the Edit
button for the Output �le �eld, which, if you have con�gured an audio editor for
csound5gui, will open the editor with the output sound�le already loaded and ready
to play or edit (Figure 2.15).

2.1.5. Real-Time MIDI Performance

Real-time MIDI performance means playing Csound as a live MIDI synthesizer. Your
computer must have an audio interface connected to headphones or speakers, your
computer must also have a MIDI interface, and you must plug the MIDI out port
of your MIDI keyboard or other controller into the MIDI In port of your MIDI
interface.

You start Csound with an orchestra that is designed for real-time MIDI perfor-
mance, you play your controller, Csound renders what you play as you play it, and

17

2. Getting Started

Figure 2.15.: Playing Output Sound�le

you hear the audio output from your speakers or headphones.
If you have a reasonably new personal computer with a reasonably up to date

version of Windows, you will hear what you are playing within a few milliseconds
of when you play it. Since your reaction time is probably around 20 milliseconds or
a little less, and even the best keyboard players are only accurate within about 5
milliseconds, that is fast enough to seem almost instantaneous.
The following explains how to do real-time MIDI performance on my new notebook

computer, running Windows XP Media Center Edition, using an M-Audio Ozone
as audio interface, MIDI interface, and MIDI keyboard. Assuming that you have
already installed your audio and MIDI interfaces and controllers, you would take
almost identical steps with your own setup.

1. Run csound5gui.

2. Click on the button with three dots by the Orchestra/CSD �eld to open the
Select orchestra or CSD �le dialog. Navigate to the C:\Csound\examples
directory, and open the CsoundVST-nomixer-flags.csd �le (currently the
Mixer opcodes do not seem to work with MIDI), which is designed for both o�-
line rendering and real-time MIDI performance. csound5gui will, by default,
use the Csound options set in the <CsOptions> tag of this �le. However, you
must override some of these options manually.

3. The current version of csound5gui is not written to set all possible Csound
options from the settings dialog. Therefore, you must edit the orchestra �le
to set some options. Click on the Edit button next to the Orchestra/CSD

18

C: Csound examples
CsoundVST-nomixer-flags.csd

2.1. On Windows

�eld. In the orchestra �le, locate the <CsOptions> tag. Add the following
options to this tag: --midi-key-oct=4 --midi-velocity=5. These options
cause MIDI note on message key numbers to be sent to p�eld 4 in Csound
instruments as linear octaves, and MIDI velocity numbers to be sent to p�eld
5.

4. Add to your Csound orchestra header (i.e., before any instrument de�nition
blocks) the following statement to reassign MIDI channel 1 to Csound instru-
ment 5: massign 1, 5. Save the orchestra �le.

5. All the other options can now be set by dialog. Use the Options pop-up
menu, Csound... item, to bring up the Csound performance settings
dialog. Select the General tab, and type 44100 into the Sample rate �eld,
and 441 into the Control rate �elds (corresponds to the -r and -k options).
This will cause Csound to compute 100 audio sample frames for each control
sample, or kperiod.

6. Select the Sound I/O tab, and type dac into the Output �le �eld (corre-
sponds to the -o dac option; dac stands for digital to audio converter, i.e. the
audio output interface, and plain dac or dac0 is the default audio port).

7. Use the File type combo box, and select the wav item to produce Windows
WAV format audio (corresponds to the -W option).

8. Use the Sample format combo box and select the short item, to write 16-bit
integer samples (CD quality) for audio output (corresponds to the -s option).

9. Disable the Rewrite header checkbox � it's irrelevant for real-time audio.

10. Disable the Dither checkbox � it's not needed for real-time audio.

11. Select the Real time audio tab, and select PortAudio in the Real time au-
dio module combo box (corresponds to the -+rtaudio=PortAudio option).

12. Select 128 in the Bu�er size in sample frames combo box (corresponds to
the -b128 option).

13. Select 4 in the Number of bu�ers combo box (corresponds to the -B512

option). At 44100 frames per second, that givers an audio output latency of
11.6 milliseconds.

14. Enable the Perform in a separate thread checkbox.

15. Select the MIDI tab, and select PortMidi in the Real time MIDI module
combo box (corresponds to the -+rtmidi=PortMidi option).

16. Type 0 in the Input device �eld (corresponds to the -M0 option; 0 is the
default MIDI port).

19

2. Getting Started

Now close the Csound performance settings dialog, and click on the Play/-
Pause button. You should hear nothing, because the <CsScore> tag in the .csd

�le contains no notes � you will be playing the notes in. If you do hear anything,
you have a problem!

Now, play a few notes on your keyboard or other MIDI controller. You should hear
something now. More speci�cally, you should hear a Hammond B3 organ sound. If
you don't hear anything, or if you do hear something but it sounds wrong, you have
a problem. Click on the Stop button.

The most likely problem is that the default audio device or MIDI device is not
suitable. As Csound runs, it prints a list of available devices, so look at the Csound
console messages window to see them (Figure 2.16).

Figure 2.16.: Available Interfaces

If you know the correct audio and MIDI devices, go back to csound5gui and
change the device number in the Output �le �eld. In this case, I know that the
Ozone's ASIO interface, device number 8, has the best latency. So, I change the
output to dac8. If you don't know the right device, change the number systematically
until you �nd the best one. If that still doesn't work, try increasing the value of the
-b option for higher latency.

After making your corrections, click on the Play/Pause button and try playing a
few notes again. As the piece renders, the Current score time �eld in csound5gui

displays the elapsed real time, and Csound messages are printed to the Csound
console messages window. These will include rtevent noti�cations for real-time
score events, and midiKey and midiVelocity noti�cations showing how the MIDI
note on message �elds are mapped to Csound p�elds (Figure 2.17).

You can stop rendering at any time by clicking on the Stop button, and after
stopping you can restart.

To hear di�erent Csound instruments, change the massign statement to other in-
strument numbers, or change the MIDI channel assignment of your MIDI controller,
and start Csound again.

20

2.2. On Linux

Figure 2.17.: MIDI Performance

2.2. On Linux

To be completed.

2.3. On Apple

To be completed.

21

2. Getting Started

22

3. Writing Orchestras and Scores

The chapter starts with two short sections on how software synthesizers in general,
and Csound in particular, work. You can skip these sections if you are not interested.
There follows a section on writing the simplest possible instrument, and making it
sound better and better through a sequence of increasingly re�ned versions.

3.1. Signal Flow Graphs

Almost all software synthesizers run as a set of unit generators (opcodes, in Csound
terminology) that are connected so that the outputs of some units feed into the
inputs of other units. It is very similar to a modular electronic synthesizer, such as
a Moog synthesizer, in which small electronic units are patched together with cords.
In software engineering, this kind of wiring diagram is called a synchronous signal

�ow graph. Oscillators, �lters, modulators, envelope generators, and even arithmetic
operators and functions are all unit generators.
In Csound, each instr or instrument block in the orchestra code is one signal

�ow graph. The inputs to an instrument consist of any number of p�elds (standing
for parameter �elds), which come from i statements in the score, or from real-time
events:

p1 Always represents instrument number, which can be an integer or a fraction.
Score events with fractional numbers are considered to be �tied� in the sense
that after an instrument instance is initialized, a new score event with the
same fractional number is sent to the already running instrument instance,
which skips its initialization run. This produces a very good approximation of
a slur tying two notes in music notation.

p2 Always represents the time that the score event begins, although this time can
be in seconds or, if the score contains a t (tempo) statement, in musical beats.

p3 Always represents the duration of the score event, in seconds or in beats; if -1,
the event will continue inde�nitely. Note that instruments can modify the
value of their own p3 �elds.

p4...pN Higher p�elds have user-de�ned meanings. However, throughout this tu-
torial, p4 represents pitch as MIDI key number,1 and p5 represents loudness
as MIDI velocity number.2

1MIDI key number represents pitch in semitones, ranging from 0 to 127, with middle C = 60. In
Csound, fractional MIDI key numbers can be used to represent non-equally-tempered pitches.

2MIDI velocity number represents loudness in a roughly logarithmic scale, ranging from 0 to 127,
with mezzo-forte being perhaps 100.

23

3. Writing Orchestras and Scores

Each Csound opcode is one unit generator, and is written as one line of text.
Assignment statements, logical operators, and arithmetic operators are also imple-
mented, when the orchestra �le is compiled, as unit generators.
Opcodes accept zero more input arguments, and output zero or more return values.

The output of an instrument block is sent to output using various opcodes, usually
outs or outc. Since these opcodes have no outputs inside the instrument, they are
root nodes of the graph (of course, a graph may have more than one root node).
In Csound, variables and opcodes are active at di�erent rates :

i-rate Initialization rate � scalar variables whose names begin with the letter i,
and whose values are �xed when an instrument instance is initialized, and
never change after that.

k-rate Control rate � scalar variables whose names begin with the letter k, and
whose values can change at the control rate.

a-rate Audio rate � vector variables whose names begin with the letter a, and whose
values can change at the sample frame rate. Obviously, all input and output
audio signals must be represented in a-rate variables.

3.2. How Csound Works

3.2.1. Csound Files

Listing 3.1 shows a very simple .csd �le, which creates the simplest possible instru-
ment and plays one note on it. The code is however extensively commented.

Listing 3.1: Simple Orchestra
<CsoundSynthesizer >

<CsOptions >

-R -W -f -o tutorial.wav

</CsOptions >

<CsInstruments >

; Sample frames per second.

sr = 88200

; Number of sample frames per control period.

ksmps = 1

; Number of audio output channels.

nchnls = 2

; Amplitude of 0 decibels full scale (maximum amplitude).

0dbfs = 32767

; Instrument number one -- very simple.

instr 1

; Pfield 4 contains pitch as MIDI key number.

ikey = p4

; Pfield 5 contains loudness as MIDI velocity number.

ivelocity = p5

; Translate MIDI key to linear octave.

ioctave = ikey / 12 + 3

; Translate linear octave to cycles per second.

ifrequency = cpsoct(ioctave)

; Translate MIDI velocity to decibels full scale.

idb = ivelocity / 127 * 84

; Translate decibels to output amplitude.

iamplitude = ampdb(idb)

; Generate a band -limited sawtooth wave.

24

3.2. How Csound Works

aout vco2 iamplitude , ifrequency

; Send the output to both channels

outs aout , aout

endin

</CsInstruments >

<CsScore >

i 1 1 5 60 100

</CsScore >

</CsoundSynthesizer >

A .csd �le is a kind of XML �le, containing sections marked o� by tags. The
<CsOptions> tag contains command-line options, the <CsInstruments> tag contains
the Csound orchestra, which in turns contains a header and one or more instrument
de�nition blocks, and the <CsScore> tag contains zero or more f statements (for
generating function tables) and i statements (for sending notes to instruments).
Any line beginning with a semicolon is a comment and is not interpreted.
In order to make instrument de�nitions easier to read, many people follow the

convention of writing each opcode line in 3 widely and evenly spaced columns, with
the output variables �ush left, the opcode itself in the middle (remember that = is
an opcode), and the input parameters on the right. I also think it is easier to read
if comments go above lines, not at the right of lines.

3.2.2. Performance Loop

When Csound reads the .csd �le, this is what happens:

1. Csound loads any plugins in the OPCODEDIR (for 32 bit sample Csound) or
OPCODEDIR64 (for 64 bit sample Csound) directory.

2. Csound reads its input �les. If the input is a .csd �le, Csound creates a
temporary orchestra (.orc) �le from the <CsInstruments> tag of the .csd

�le, and a temporary score (.sco) �le from the <CsScore> tag of the .csd �le.

3. Csound parses its command-line options, which can come from various sources
(in order of increasing precedence):

a) Csound's internal defaults.

b) A .csoundrc �le in the user's home directory, or the directory speci�ed
by the CSOUNDRC environment variable.

c) A .csoundrc �le in the current directory.

d) The <CsOptions> tag in the .csd �le.

e) The command line.

4. Csound loads and enables any plugin modules required for audio or MIDI input
or output.

5. Csound reads the orchestra �le, and sets the sample frame rate, kperiod size,
and number of audio output channels from the sr, ksmps, and nchnls state-
ments, respectively, in the orchestra header.

25

3. Writing Orchestras and Scores

6. Csound parses the instr blocks in the orchestra �le, and compiles each instr

block into an instrument template, which contains storage for input �elds, and
two linked lists of opcode templates. One list is for initializing an instrument
instance, and the other list is for operating the instance.

7. Csound reads the score �le, translates tempo statements, score sections, macros,
continuation and increment operators, and so on, and sorts the results to pro-
duce a sorted, time-warped, compiled score �le.

8. Csound actually performs the compiled score with the compiled instrument
templates:

a) Csound runs down the initialization list for any global instruments or op-
codes, and calls each opcode's initialization function (e.g., to load Sound-
Fonts).

b) Csound checks to see if any real-time events or score events are pending,
or if performance has �nished. If f statements are pending, Csound goes
to step 8c. If i statements are pending, Csound goes to step 8d. If
performance is �nished, Csound goes to step 8f.

c) Csound allocates memory for any pending f statements, and initializes
the function table; this can involve computing a mathematical curve, or
loading a sound�le or a table of data from the disk.

d) Csound looks for an inactive instrument instance for each pending i state-
ment. If an inactive instance is found, Csound activates it. If there is
no inactive instance, Csound creates a new instance by copying the in-
strument template (and its associated lists of opcode templates). Csound
�lls in the instance's p�elds from the i statement. Csound then runs
down the instance's initialization list, and calls each opcode's initializa-
tion function.

e) Csound performs one kperiod. Csound runs down the list of instrument
instances. For each active instance, Csound runs down the instances's
operation list, and calls each opcode's operation function. Inside the op-
eration function, if there are any a-rate variables, an inner loop must run
for ksmps sample frames to compute each element of the vector. If the cur-
rent time has passed the sum of p2 and p3, or if an instrument has turned
itself o�, Csound deactivates the instance. When all the instances have
been run, Csound sends the audio output bu�er to the output sound�le
or device. Csound then goes back to step 8b.

f) Csound calls a deinitialization function in each plugin, closes any device
plugins, deallocates instrument instances, and resets itself for another
performance (or exits).

3.3. Writing Your First Piece

Use a text editor to create a .csd �le named tutorial2.csd, which should contain
only the empty tags:

26

3.3. Writing Your First Piece

Listing 3.2: Empty .csd File
<CsoundSynthesizer >

<CsOptions >

</CsOptions >

<CsInstruments >

</CsInstruments >

<CsScore >

</CsScore >

</CsoundSynthesizer >

Now �ll in the tags one at a time. If you are going to run the piece using
csound5gui, you do not need to �ll in the <CsOptions> tag. It may be a good
idea, however, to put in some reasonable default options:

<CsOptions >

-W -f -R -o tutorial2.wav

</CsOptions >

Create the orchestra header for a sample frame rate of 88200, a control sample
rate of 1, and stereo channels (i.e. for a high-resolution stereo sound�le):

<CsInstruments >

sr = 88200

ksmps = 1

nchnls = 2

</CsInstruments >

Add a global ftgen opcode to generate a global function containing a high-
resolution sine wave. The number of the wavetable is stored in the global gisine
variable. The p�elds mean:

1. Function number (0 means automatically generate the number).

2. Time at which the function table will be created (0 means the beginning of
performance).

3. Size of the table. The bigger the table, the less noise in the signal. 65536 is
2 to the 16th power, which produces a low-noise signal; increasing the size by
1 means that interpolating oscillators that require a power of 2 size have one
element past the end of the table to use for interpolation (a guard point).

4. The GEN function used to generate the table; GEN 10 generates a series of
harmonic partials.

5. Further arguments depend on the GEN function. For GEN 10, the single p�eld
1 means generate the �rst partial with amplitude 1, and no other partials �
i.e. a sine wave.

<CsInstruments >

sr = 88200

ksmps = 1

nchnls = 2

gisine ftgen 0, 0, 65537, 10, 1

</CsInstruments >

27

3. Writing Orchestras and Scores

3.3.1. Simple Sine Wave

Add an empty instrument de�nition for instrument number 1. Instrument de�nitions
begin with the keyword instr and the instrument number, and end with the keyword
endin.

<CsInstruments >

sr = 88200

ksmps = 1

nchnls = 2

gisine ftgen 0, 0, 65537, 10, 1

instr 1

endin

</CsInstruments >

In the instrument de�nition, create i-rate variables to receive MIDI key number
and velocity number from p�elds 4 and 5:

instr 1

ikey = p4

ivelocity = p5

endin

Translate the MIDI key number in semitones with middle C = 60 to linear octaves
with middle C = 8, and translate the MIDI velocity number to range from 0 to 84
(roughly the dynamic range in decibels of a compact disc):

instr 1

ikey = p4

ivelocity = p5

ioctave = ikey / 12 + 3

idb = ivelocity / 127 * 84

endin

Translate the octave and decibels to Csound's native units, which are cycles per
second and amplitude:

instr 1

ikey = p4

ivelocity = p5

ioctave = ikey / 12 + 3

idb = ivelocity / 127 * 84

ifrequency = cpsoct(ioctave)

iamplitude = ampdb(idb)

endin

Add a signal generator, in this case a precision wavetable oscillator for producing
a sine wave from our global table:

instr 1

ikey = p4

ivelocity = p5

ioctave = ikey / 12 + 3

idb = ivelocity / 127 * 84

ifrequency = cpsoct(ioctave)

iamplitude = ampdb(idb)

asignal poscil iamplitude , ifrequency , gisine

endin

Send the signal you have generated to each channel of the stereo output:

instr 1

ikey = p4

ivelocity = p5

ioctave = ikey / 12 + 3

idb = ivelocity / 127 * 84

28

3.3. Writing Your First Piece

ifrequency = cpsoct(ioctave)

iamplitude = ampdb(idb)

asignal poscil iamplitude , ifrequency , gisine

outs asignal , asignal

endin

Your new instrument takes 5 p�elds:

1. Instrument number.

2. Time in seconds.

3. Duration in seconds.

4. MIDI key number.

5. MIDI velocity.

Create an i statement to play a middle C note at mezzo-forte on this instrument
at time 1 second for 3 seconds:

<CsScore >

i 1 1 3 60 100

</CsScore >

Your piece is now ready to perform (Listing 3.3).

Listing 3.3: Instrument De�nition
<CsoundSynthesizer >

<CsOptions >

</CsOptions >

<CsInstruments >

sr = 88200

ksmps = 1

nchnls = 2

gisine ftgen 0, 0, 65537, 10, 1

instr 1

ikey = p4

ivelocity = p5

ioctave = ikey / 12 + 3

idb = ivelocity / 127 * 84

ifrequency = cpsoct(ioctave)

iamplitude = ampdb(idb)

asignal poscil iamplitude , ifrequency , gisine

outs asignal , asignal

endin

</CsInstruments >

<CsScore >

i 1 1 3 60 100

</CsScore >

</CsoundSynthesizer >

Run csound5gui. Click on the square button with three dots next to the Orches-
tra/CSD text �eld, and use the �le dialog to open your tutorial2.csd �le. Type
tutorial2.wav in the Output �le �eld. Open the Options menu, Csound...
item, and set the options in the Csound performance settings dialog, for wav
File type, float Sample format, Enable dither, and Rewrite header.
Click on the Edit button next to the Orchestra/CSD �eld, which will re-open

the �le for editing. Click on the Play/Pause button to render the piece. When the

29

tutorial2.csd

3. Writing Orchestras and Scores

Figure 3.1.: tutorial2.csd

rendering has completed, click on the Output �le �eld Edit button to hear the
piece (Figure 3.1).
Well, it's not a very interesting piece! And typing in note statements becomes

extremely tedious, even for a simple piece like Three Blind Mice. Of course, people
who actually use Csound to make music either write programs to generate scores, or
they use a MIDI sequencer or notation software, or they play live. Here, however,
we will focus only on improving the sound of the instrument.

3.3.2. Simple Sine Wave, De-Clicked

The most obvious problem right now is that the sound begins and ends with an
obnoxious click. This is caused by the sharp discontinuity in the signal when the
note abruptly turns on and abruptly turns o�. This can be �xed by adding a
damping envelope to tail o� the clicks. In fact, every Csound instrument, with rare
exceptions, should have such a damping envelope. Make a copy of your instrument,
and number it 2, and add a linsegr opcode to tail o� the clicks. It is a good idea
to add the attack and release times to p3, just in case you have a very short note.

instr 2

ikey = p4

ivelocity = p5

ioctave = ikey / 12 + 3

idb = ivelocity / 127 * 84

ifrequency = cpsoct(ioctave)

iamplitude = ampdb(idb)

asignal poscil iamplitude , ifrequency , gisine

iattack = 0.0015

irelease = 0.002

isustain = p3

30

3.3. Writing Your First Piece

p3 = iattack + isustain + irelease

adamping linsegr 0.0, iattack , 1.0, isustain , 1.0, irelease , 0.0

asignal = asignal * adamping

outs asignal , asignal

endin

Also add a note to test the new instrument. The ^+4 in p�eld 2 means to add
4 to p�eld 2 of the previous i statement. We do this to create a second of silence
between each test note. For all subsequent modi�cations, in the same way, we will
make a copy of the previous instrument and add a new test note to play it.

<CsScore >

i 1 1 3 60 100

i 2 ^+4 3 60 100

</CsScore >

Again, render and listen. The note now starts and ends abruptly but without
clicks, which is what we want. Of course, the sound is still boring.

3.3.3. Simple Sine Wave, De-Clicked, ADSR Envelope

Let's add a real envelope to give some shape to the sound. Use the mxadsr opcode
to add an attack, decay, sustain, release (ADSR) envelope with exponentially rising
and falling segments (this is musically one of the commonest types of envelope).

instr 3

ikey = p4

ivelocity = p5

ioctave = ikey / 12 + 3

idb = ivelocity / 127 * 84

ifrequency = cpsoct(ioctave)

iamplitude = ampdb(idb)

ienvattack = 0.004

ienvdecay = 0.5

ienvlevel = 0.25

ienvrelease = 0.05

aenvelope mxadsr ienvattack , ienvdecay , ienvlevel , ienvrelease

asignal poscil iamplitude , ifrequency , gisine

asignal = asignal * aenvelope

iattack = 0.0015

irelease = 0.002

isustain = p3

p3 = iattack + isustain + irelease

adamping linsegr 0.0, iattack , 1.0, isustain , 1.0, irelease , 0.0

asignal = asignal * adamping

outs asignal , asignal

endin

Better, but a sine wave is too plain.

3.3.4. Frequency Modulation, De-Clicked, ADSR Envelope

Add some basic frequency modulation to thicken up the sound. Use another poscil
opcode to modulate the frequency of the signal generating oscillator. This has the
e�ect of generating additional harmonics in the signal, whose content is controlled
by both the amplitude and the frequency of the modulation.

instr 4

ikey = p4

ivelocity = p5

ioctave = ikey / 12 + 3

idb = ivelocity / 127 * 84

31

3. Writing Orchestras and Scores

ifrequency = cpsoct(ioctave)

iamplitude = ampdb(idb)

ienvattack = 0.004

ienvdecay = 0.5

ienvlevel = 0.25

ienvrelease = 0.05

aenvelope mxadsr ienvattack , ienvdecay , ienvlevel , ienvrelease

amodulator poscil 800.0, ifrequency * 7.00, gisine

asignal poscil iamplitude , ifrequency + amodulator , gisine

asignal = asignal * aenvelope

iattack = 0.0015

irelease = 0.002

isustain = p3

p3 = iattack + isustain + irelease

adamping linsegr 0.0, iattack , 1.0, isustain , 1.0, irelease , 0.0

asignal = asignal * adamping

outs asignal , asignal

endin

The sound is thicker, but it's not changing much as it sounds. Real musical sounds
tend to vary subtly all the time.

3.3.5. Frequency Modulation, De-Clicked, ADSR Envelope,
Time-Varying Modulation

Take a step in this direction by using the ADSR envelope to modulate not only the
signal amplitude, but also the amount of frequency modulation. The only di�erence
is to multiply the amodulator variable by the aenvelope variable.

instr 5

ikey = p4

ivelocity = p5

ioctave = ikey / 12 + 3

idb = ivelocity / 127 * 84

ifrequency = cpsoct(ioctave)

iamplitude = ampdb(idb)

ienvattack = 0.004

ienvdecay = 0.5

ienvlevel = 0.25

ienvrelease = 0.05

aenvelope mxadsr ienvattack , ienvdecay , ienvlevel , ienvrelease

amodulator poscil 800.0, ifrequency * 7.00, gisine

asignal poscil iamplitude , ifrequency + amodulator * aenvelope ,

gisine

asignal = asignal * aenvelope

iattack = 0.0015

irelease = 0.002

isustain = p3

p3 = iattack + isustain + irelease

adamping linsegr 0.0, iattack , 1.0, isustain , 1.0, irelease , 0.0

asignal = asignal * adamping

outs asignal , asignal

endin

The sound is now almost usable. In fact, in some contexts, it probably is usable.
In general, the more notes are playing, the simpler the actual sounds should be, and
the fewer notes are playing, the more complex the individual notes should be. This
sound would probably be usable in a busy texture. But suppose we are hearing only
a few notes at a time?

32

3.3. Writing Your First Piece

3.3.6. Frequency Modulation, De-Clicked, ADSR Envelope,
Time-Varying Modulation, Stereo Phasing

Add some delay lines with modulation of the delay times in opposing phase. This
will create a moving texture that will shift from one side of the sound stage to the
other. Apply the de-clicking envelope to the signal written to the delay line as well.

instr 6

ikey = p4

ivelocity = p5

ioctave = ikey / 12 + 3

idb = ivelocity / 127 * 84

ifrequency = cpsoct(ioctave)

iamplitude = ampdb(idb)

ienvattack = 0.004

ienvdecay = 0.5

ienvlevel = 0.25

ienvrelease = 0.05

aenvelope mxadsr ienvattack , ienvdecay , ienvlevel , ienvrelease

amodulator poscil 800.0, ifrequency * 7.00, gisine

asignal poscil iamplitude , ifrequency + amodulator * aenvelope ,

gisine

asignal = asignal * aenvelope

iattack = 0.0015

irelease = 0.002

isustain = p3

p3 = iattack + isustain + irelease

adamping linsegr 0.0, iattack , 1.0, isustain , 1.0, irelease , 0.0

krtapmod poscil 0.002, 1.1, gisine , 0

kltapmod poscil 0.003, 1, gisine , 0.5

adump delayr 1.0

ad1 deltapi 0.025 + kltapmod

ad2 deltapi 0.026 + krtapmod

delayw asignal * adamping

aleft = asignal + ad1

aright = asignal + ad2

outs aleft * adamping , aright * adamping

endin

3.3.7. MIDI Performance

You can easily modify your patch in order to play it live with a MIDI controller
(Figure 3.2).

1. Add an massign 1, 6 statement in the orchestra header, to send MIDI channel
1 to Csound instrument 6.

2. Add --midi-key=4 --midi-velocity=5 to the <CsOptions> tag, to send
MIDI key and velocity to p�elds 4 and 5, respectively.

3. Add a pset statement to instrument 6 to set default values for all 5 of your
p�elds, so that instrument instances triggered by live MIDI events will receive
values (otherwise, warning messages about p4 and p5 not being legal for MIDI
will print). Such default values can be useful if you use score p�elds to set
sound-generating parameters in your instruments. In this case, they can all be
zeros.

33

3. Writing Orchestras and Scores

4. You may wish to delete all i statements from the <CsScore> tag. If you do so,
you must add an f 0 3600 statement, to tell Csound to render without score
events for 3600 seconds (of course 3600 can be any value).

<CsoundSynthesizer >

<CsOptions >

</CsOptions >

<CsInstruments >

sr = 88200

ksmps = 1

nchnls = 2

massign 1, 6

gisine ftgen 0, 0, 65537, 10, 1

instr 6

pset 0, 0, 0, 0, 0

ikey = p4

ivelocity = p5

ioctave = ikey / 12 + 3

idb = ivelocity / 127 * 84

ifrequency = cpsoct(ioctave)

iamplitude = ampdb(idb)

ienvattack = 0.004

ienvdecay = 0.5

ienvlevel = 0.25

ienvrelease = 0.05

aenvelope mxadsr ienvattack , ienvdecay , ienvlevel , ienvrelease

amodulator poscil 800.0, ifrequency * 7.00, gisine

asignal poscil iamplitude , ifrequency + amodulator * aenvelope ,

gisine

asignal = asignal * aenvelope

iattack = 0.0015

irelease = 0.002

isustain = p3

p3 = iattack + isustain + irelease

adamping linsegr 0.0, iattack , 1.0, isustain , 1.0, irelease , 0.0

krtapmod poscil 0.002, 1.1, gisine , 0

kltapmod poscil 0.003, 1, gisine , 0.5

adump delayr 1.0

ad1 deltapi 0.025 + kltapmod

ad2 deltapi 0.026 + krtapmod

delayw asignal * adamping

aleft = asignal + ad1

aright = asignal + ad2

outs aleft * adamping , aright * adamping

endin

</CsInstruments >

<CsScore >

i 1 1 3 60 100

i 2 ^+4 3 60 100

i 3 ^+4 3 60 100

i 4 ^+4 3 60 100

i 5 ^+4 3 60 100

i 6 ^+4 3 60 100

</CsScore >

</CsoundSynthesizer >

Modify the Csound options also:

1. Change the Output file to your audio output port (8, in my case).

2. Change the audio sample frame rate to 44100.

3. Set the MIDI port (to 0, in my case).

34

3.3. Writing Your First Piece

Figure 3.2.: Playing tutorial2.csd Live

If you plan to do both o�-line rendering and live performance, you may wish to
standardize some aspects of your instrument de�nitions:

1. Always use the new MIDI routing �ags such as --midi-key for MIDI input,
not the older MIDI opcodes such as notnum, or even the more recent MIDI
interoperability opcodes such as midinoteonkey.

2. Always put function table statements in the orchestra header, not in the score;
in other words, use ftgen instead of f statements. If you put function tables
in the score, you won't be able to just throw out a score to use an orchestra
in live performance.

3. Always specify pitch as MIDI key number.

4. Always specify loudness as MIDI velocity.

5. In fact, always use the same set of standard p�elds in all your instruments �
you may add additional p�elds to set sound generating parameters that are
speci�c to an instrument.

6. Always use a pset statement to give a default value to each p�eld, even if it
is 0.

7. Always use a releasing envelope generator so that notes will end gracefully
during live performance. The names of all the releasing envelope opcodes end
with r.

35

3. Writing Orchestras and Scores

8. Worry about sound quality �rst, and e�ciency second. If your computer is
having trouble keeping up, you can take a good sounding orchestra and �gure
out where to substitute more e�cient opcodes (oscil for poscil, for example)
much more easily than you can make an orchestra written for e�ciency sound
good.

This chapter is only a super�cial introduction to a very deep topic � some excel-
lent books have been written on it [4, 5, 6].

36

4. Using CsoundVST

CsoundVST is an extended version of Csound that provides a basic graphical user
interface, the ability to run Python programs that can interact with Csound, a
variety of Python classes to support algorithmic composition (the Silence system
[16]), and the ability to run as a VST instrument (VSTi) or e�ect plugin in hosts
such as Cubase [17]. One reason for doing this is to write pieces for Csound in
standard music notation. Another reason is that Csound instruments can easily
sound better than most other VSTis, although some Csound orchestras use a lot
of CPU time. This chapter shows how to use Csound as a programmable VSTi in
Cubase SX 3. Other audio sequencers should follow similar procedures.

4.1. Con�guring CsoundVST

The following assumes that you have installed Csound from one of the Windows
installers, which include CsoundVST. You must also have installed Python version
2.4 [18], which CsoundVST needs to run. The Windows installer is supposed to
con�gure Python for CsoundVST. To verify that this has actually happened, run the
Python editor Idle. From Idle's Run menu, invoke the Python shell. In the Python
shell, type import CsoundVST. If you don't see an error message, it succeeded. You
should see something like Figure 4.1.

Figure 4.1.: Importing CsoundVST

If Python runs, but you see an error message when you try to import CsoundVST,
then you need to add the directory where the _CsoundVST.dll has been installed,
i.e. the C:\Csound\bin directory, to your PYTHONPATH environment variable.
To con�gure Cubase for CsoundVST, run Cubase. Use theDevicesmenu, Plugin

information dialog, VST Plug-ins tab. In the Shared VST Plug-ins folders

37

C: Csound bin

4. Using CsoundVST

�eld type the path to _CsoundVST.dll, again ;C:\Csound\bin. Then click on the
Add button to append the CsoundVST path to the existing Cubase plugin path
(Figure 4.2).

Figure 4.2.: CsoundVST Plugin Path

Verify that CsoundVST is now available as follows. Quit Cubase and start it again,
and use the Devices menu, VST Instruments dialog to select _CsoundVST as a
VSTi. After a brief delay for loading, you should see something like Figure 4.3.
If you don't see this, see Footnote 4 about environment variables. Look for a

variable named PYTHONPATH. If it exists, append ;C:\Csound\bin to its value. If
does not exist, create it with the value ;C:\Csound\bin. Then try again.

4.2. Using CsoundVST

In order to use CsoundVST:

1. Begin a Cubase song, and create a MIDI track in it.

2. Create an instance of CsoundVST.

3. Load a Csound orchestra in CsoundVST.

4. Con�gure the orchestra for VST input and output.

38

;C: Csound bin
;C: Csound bin
;C: Csound bin

4.2. Using CsoundVST

Figure 4.3.: CsoundVST Loaded

39

4. Using CsoundVST

5. Compile the orchestra.

6. Select CsoundVSt as an output for the MIDI track.

7. Assign your track's MIDI channel to a Csound instrument number in your
orchestra (in fact, you can create any number of tracks assigned to CsoundVST,
and you can also create multiple instances of CsoundVST).

8. Enter some music � by playing notes in from a MIDI controller, by importing
a MIDI �le, by using the piano roll editor, or by writing music notation.

These steps can be carried out as follows.

4.2.1. Create a Cubase Song

Run Cubase, and use the File menu, New item to create a new empty project
(Figure 4.4).

Figure 4.4.: Creating a New Project

Use the Project menu to add a new MIDI Track to your song (Figure 4.5).

4.2.2. Create an Instance of CsoundVST

Use the Devices menu, VST Instruments dialog to create a new instance of
CsoundVST. Right-click the mouse on an empty �eld to bring up a context menu
listing available VSTis, and select _CsoundVST. You should now see the Csound-
VST GUI in Cubase (Figure 4.6). Make sure that the Instrument checkbox is
enabled; if not, enable it, then click on the Apply button to save your preference.

40

4.2. Using CsoundVST

Figure 4.5.: Creating a New Track

Figure 4.6.: Creating a New Instance of CsoundVST

41

4. Using CsoundVST

4.2.3. Load a Csound Orchestra

Click on CsoundVST's Open button, navigate to C:\Csound\examples directory,
and open the CsoundVST-nomixer-flags.csd �le, which contains a prewritten or-
chestra of sample Csound instruments for VST plugin use (Figure 4.7; for some
reason, the Mixer opcodes don't seem to work in CsoundVST). You can click on the
Orchestra tab to look at or edit the code.

Figure 4.7.: Loading an Orchestra

4.2.4. Con�gure the Orchestra for VST

Click on CsoundVST's Settings tab, and con�gure the orchestra you have loaded
to work inside a VST plugin by typing the following options in the Classic Csound
command line text �eld.
csound -m3 -f -h -+rtmidi=null -M0 --midi -key -oct=4 --midi -velocity =5 -d -n temp.

orc temp.sco

The meanings of each option are as follows. Each setting that is required for VST
performance is indicated.

csound In CsoundVST, the Csound command must be entered just as if you were
executing this command line on the command line.

-m3 Display Csound messages to level 3: amplitude messages and signal out of range
warnings.

-f Output �oating-point samples.

42

C: Csound examples
CsoundVST-nomixer-flags.csd

4.2. Using CsoundVST

-h Do not output a sound�le header (which might sound like a click), since Csound's
audio output is going straight into Cubase.

-+rtmidi=null Required. Use a �dummy� MIDI driver. CsoundVST's code inserts
the parts of a MIDI driver into Csound that CsoundVST requires to receive
MIDI from the VST host.

-M0 Required. Receive MIDI from port 0 (again, this is a �dummy� that simply
enables Csound to receive MIDI events).

�midi-key-oct=4 Required. Send MIDI note on message key numbers as linear
octaves to p�eld 4 of the Csound instruments in the orchestra.

�midi-velocity=5 Required. Send MIDI velocity key numbers to p�eld 5 of the
Csound instruments in the orchestra.

-d Required. Display no graphs of wavetables.

-n Required. Do not send any audio output to actual audio devices or sound�les �
CsoundVST copies audio straight out of the internal bu�ers of Csound into
the host bu�ers.

temp.orc Required. CsoundVST stores the Csound orchestra internally in its VST
patch. But to perform the score, Csound must automatically export the or-
chestra using this �lename.

temp.sco Required. CsoundVST stores the Csound score internally in its VST
patch. But to perform the score, Csound must automatically export the score
using this �lename.

When you have created your options, you must make sure that your edits are saved
with the Cubase File menu, Save command.

4.2.5. Compile the Orchestra

Before you can play an orchestra, it must be compiled. In Cubase, you activate
a VST plugin by clicking on the on/o� button (it will light up) that is found on
the upper left hand corner of the VST instrument GUI, or also on the MIDI track
channel settings. You de-activate the plugin by clicking again on the on/o� button
(it will go dark). When CsoundVST is activated, it exports its stored orchestra and
score, compiles them, and performs them; they are then ready to receive MIDI input
from Cubase. When CsoundVST is de-activated, it stops performing.
Note: when Cubase loads a song containing CsoundVST, Cubase will automatically

activate CsoundVST. This can cause a delay as the orchestra compiles.

As the orchestra compiles, which normally takes a second or so, Csound will print
informational messages to the message text area at the bottom of the Settings tab.
When the messages stop scrolling, compilation is complete (Figure 4.8).

43

4. Using CsoundVST

Figure 4.8.: Compiled Orchestra

4.2.6. Track Setup

Before you can actually get any sound out of CsoundVST, you must select it as an
output in your MIDI track. In the Track panel, out �eld, use the left mouse button
to pop up a list of available outputs. If it has been activated, _CsoundVST should
be one of these. Select it.

4.2.7. MIDI Channel Setup

Now, assign your MIDI track's channel number. The orchestra contains many more
than 16 instruments, but you can assign MIDI channels to instruments numbered
higher than 16 by using the massign statement in the Csound orchestra header.

Create a part in your MIDI track, set up a loop for the part, use the Track
panel's chn �eld to assign your track's MIDI channel to a number between 1 and
16, inclusive.

Start recording, and play some notes on your MIDI controller. If notes begin
appearing in your part, you know your MIDI interface is working. You may hear
nothing at all, or you may hear a loud distorted sound. Use the VST instrument
volume control to adjust the gain, if necessary (Figure 4.9). If you still hear nothing,
check the Csound messages pane, and re-activate Csound if necessary.

If you make any changes to the Csound orchestra, be sure you use the Cubase File
menu, Save command to save your edits. These edits are saved inside the Cubase
song (.cpr) �le, not to the Csound orchestra that you originally exported, although
you can re-export the .csd �le if you wish.

44

4.2. Using CsoundVST

Figure 4.9.: Channel Setup

4.2.8. Write Some Music

There are of course many ways to write music with CsoundVST in Cubase, or any
other VST-enabled audio sequencer or notation software. You can play in tracks,
write music notation, type in event lists, and so on. Figure 4.10 shows CsoundVST
rendering a Buxtehude fugue that has been imported from a public domain MIDI
�le. Note that a single instance of Csound is being used to render all 6 tracks,
each of which may play 1, 2, or more voices. Each track is assigned to a di�erent
MIDI channel, which in turn is assigned to a di�erent instrument number in the
CsoundVST.csd orchestra.
Although in this piece the CPU load (as shown by the leftmost vertical meter on

the transport bar) is light, it is easy to create instruments and e�ects in Csound that
use a lot of CPU cycles. In such cases, you can use Cubase's own o�-line rendering
facility, or you can render one track at a time by soloing it and freezing it.

45

4. Using CsoundVST

Figure 4.10.: Scoring with Csound

46

5. Python Scripting

There may be thousands or even hundreds of thousands of notes in a single piece of
music. Consequently, most musicians do not compose pieces for Csound by typing
in one note at a time.
The commonest way of writing Csound scores is to write programs to generate

scores. This is called generative music or algorithmic composition. This, again, is a
very deep subject [19, 20, 21, 22].
Of course, if you are the kind of a composer who hears music in his or her head and

you just need to get the notes you hear into Csound, you can use Sibelius, export a
MIDI �le, and have Csound perform your MIDI �le using the --midifile option:

csound --midi -key=4 --midi -velocity =5 --midifile mypiece.mid -RWZfo myrendering.wav

On the other hand, if you are such a composer and you have some facility with
programming, it is probably just as easy to write snippets of code to generate runs,
chord progressions, minimalist-style cells, and so on. In other words, a programming
language is just another form of music notation. For some purposes, code is a better
form of notation. More signi�cantly, composing by programming opens up vast new
musical possibilities:

• You can compose things that transcend the limits of your imagination.

• If you have composed something that transcends the limits of your imagination
but you don't like it, you can change the code until you do like it � sometimes.

• With recursive or fractal algorithms, a single change in the code can have
global e�ects on the piece, at every level of structure at the same time.

• You can compose things that are too tedious to notate by hand, or too precise
for performers to play.

In my view, this is the outstanding reason to use Csound � it is an ideal orchestra
for algorithmic composition.
Score generators have been written in many languages. But some languages can

operate Csound directly. At the time of writing, these include C [3], C++ [23], Java
[24], Lisp [25], Lua [26], and Python [18]. This chapter is about using Python.
Python is an open source, dynamic, high-level, object-oriented programming lan-

guage with some features of functional programming. Python is widely used, and
there is a huge number of libraries available for it, including libraries for scienti�c
computing that turn out to be very useful for computer music. Of all the languages
I have used, both in my career as a programmer and in my career as an algorithmic
composer, Python has been by far the easiest and most productive language to learn
and to use.

47

5. Python Scripting

The remainder of this chapter assumes that you have at least some experience
with Python. If not, running through the Python tutorial at the beginning of the
Python manual should be enough to get you started [27].
Csound comes with not just one but two Python interfaces:

csnd This is a Python interface to the complete Csound API, also including facilities
for loading Csound .csd, .orc, and .sco �les, and for building up .sco �les
in memory one statement at a time � very useful for score generation.

CsoundVST Includes everything in csnd, plus my Silence system [16] for algorithmic
composition based on music graphs, which represent scores as hierarchical
structures in somewhat the same way that a ray tracer represents a visual
image as a hierarchical scene graph.

This tutorial uses csnd. First we use it simply to run an existing piece � the
tutorial2.csd piece from Chapter 3. Then we use Python to generate a piece using
a Koch curve, in which each segment of a curve is replaced by a generator curve [28].
We use an existing Csound orchestra to render the piece we have generated. Finally,
we experiment with changing the parameters of the compositional algorithm.

5.1. Running Csound from Python

1. Run Idle, the Python editor that comes with Python.

2. Create a Python �le, tutorial4.py.

3. Import csnd. To verify that the import succeeded, print a directory of the
csnd module, which should list all the API functions and constants in the
module.

4. Create an instance of csnd.CppCsound, which is the Python interface to the
high-level Csound C++ class that has facilities for managing Csound �les, as
well as the rest of the standard Csound API.

5. Enable Python to print Csound messages by calling csound.setPythonMessageCallback().

6. Load the tutorial2.csd piece.

7. Set the Csound command-line options. Note that the command must be com-
pletely spelled out, as if you were entering it on the command line, including
csound and the names of the .orc and .sco �les.

8. Print out the loaded and modi�ed .csd �le by calling print csound.getText().

9. Render the piece by calling csound.perform(). You should see the Csound
messages printing out in the Idle Python Shell window.

This is illustrated in Listing 5.1 and Figure 5.1.

48

5.2. Generating a Score

Listing 5.1: Running Csound with Python
Import the Csound API extension module.

import csnd

Print a directory of its attributes

(variables , functions , and classes)

to verify that it was properly imported.

print dir(csnd)

Create an instance of Csound.

csound = csnd.CppSound ()

Enable Csound to print console messages

to the Python console.

csound.setPythonMessageCallback ()

Load the tutorial2 piece created earlier.

csound.load('tutorial2.csd')

Set the Csound command for off -line rendering.

csound.setCommand('csound -RWfo tutorial4.py.wav temp.orc temp.sco')

Print the complete .csd file.

print csound.getCSD ()

Export the .orc and .sco file for performance.

csound.exportForPerformance ()

Actually run the performance.

csound.perform ()

5.2. Generating a Score

In Csound, a score is basically a list of i statements, each with its own list of p�elds.
This tutorial has always used the same layout of p�elds. This has advantages for
algorithmic composition. It makes it easy to build up scores algorithmically.
A sample piece is shown in Listing 5.2. To understand what is happening, read

the comments in the code.
Some of the important points are as follows. The score generator is written as

a Python class, and an instance of Csound is created as a class member. After
generating the score, the code appends an e (end) statement to the score, which turns
o� the reverb instrument and other e�ects that are running on the CsoundVST.csd
orchestra's mixer buss with inde�nite durations. The code tests to see if it is running
as __main__, in which case a score is generated (as in this case), or whether it is
running because it was imported by another module, in which case no score is
generated. The other module can then initialize the generator, derive other classes
from it, and otherwise use tutorial5.py as a class library.

Listing 5.2: Koch Curve Score Generator
import csnd

49

5. Python Scripting

Figure 5.1.: Running Csound with Python in Idle

Class to represent transforming a note

by modifying an implicit initial note ,

creating a duration , adding or subtracting pitch ,

adding or subtracting loudness.

class Transform(object):

def __init__(self , duration , deltaKey , deltaVelocity):

self.duration = duration

self.deltaKey = deltaKey

self.deltaVelocity = deltaVelocity

self.normalizedDuration = 1.0

Class for generating a piece using a long initial note

and a set of transforms , recursively layering atop generated notes.

class Generator(object):

def __init__(self):

Create an instance of CppSound for rendering.

self.csound = csnd.CppSound ()

self.csound.setPythonMessageCallback ()

self.csound.load('../ examples/CsoundVST.csd')

To contain a list of transforms.

self.transforms = []

Assign instruments to levels (level:instrument)

self.arrangement = {0:12, 1:4, 2:21, 3:7, 4:37}

Assign gains to levels (level:gain)

self.gains = {0:1.5 , 1:1.25 , 2:1, 3:1, 4:1}

Assign pans to levels (level:pan)

self.pans = {0:0, 1:-.75, 2:.75, 3:-.5, 4:.5, 5:-.25, 6:.25}

def addTransform(self , deltaTime , deltaKey , deltaVelocity):

self.transforms.append(Transform(deltaTime , deltaKey , deltaVelocity

))

self.normalize ()

def normalize(self):

sum = 0.0

for transform in self.transforms:

50

5.2. Generating a Score

sum = sum + transform.duration

for transform in self.transforms:

transform.normalizedDuration = transform.duration / sum

Generate a score in the form of a Koch curve.

Each note in a generating motive

will get a smaller copy of the motive nested atop it ,

and so on.

def generate(self , level , levels , initialTime , totalDuration , initialKey ,

initialVelocity):

If the bottom level has already been reached ,

return without further recursion.

if level >= levels:

return

time = initialTime

key = initialKey

velocity = initialVelocity

for transform in self.transforms:

instrument = self.arrangement[level]

duration = totalDuration * transform.normalizedDuration

key = key + transform.deltaKey

velocity = velocity + (transform.deltaVelocity * self.gains

[level])

phase = 0

pan = self.pans[level]

print "%2d: %2d %9.3f %9.3f %9.3f %9.3f %9.3f %9.3f" % (

level , instrument , time , duration , key , velocity , phase

, pan)

self.csound.addNote(instrument , time , duration , key ,

velocity , pan)

Recurse to the next level.

self.generate(level + 1, levels , time , duration , key ,

velocity)

time = time + duration

Render the generated score.

def render(self):

Ends indefinitely playing effects on the mixer buss.

self.csound.addScoreLine("e 2")

Print the generated score for diagnostic purposes.

print self.csound.getScore ()

High -resolution rendering.

self.csound.setCommand('csound -R -W -Z -f -r 88200 -k 88200 -o

tutorial5.py.wav temp.orc temp.sco')

self.csound.exportForPerformance ()

self.csound.perform ()

self.csound.removeScore ()

If running stand -alone , generate a piece;

if imported by another module , do not generate a piece

(enables the Generator class to be used as a library).

if __name__ == '__main__ ':

Create a generator with four notes

in the same interval relationship as B, A, C, H,

i.e. Bb, A, C, B,

i.e. 0, -1, +3, -1,

offset by a tritone.

generator = Generator ()

generator.addTransform (10, 6 + 0, 0)

generator.addTransform(8, - 1, 3)

generator.addTransform(6, + 3, -2)

generator.addTransform (12, - 1, 0)

Generate a 5 minute piece.

generator.generate(0, 3, 0, 300, 38, 84)

generator.render ()

Now run the piece. I �nd that SciTE [14] actually makes a better environment for

51

5. Python Scripting

Python programming with Csound than Idle (as long as I don't have to do source-
level debugging, which SciTE doesn't support), because if you kill Csound while it is
running from Idle, Csound often keeps running anyway as a zombie process, whereas
if you kill Csound while it is running from SciTE, it really dies and you can start it
again. You can use the Tools menu, Go command to run Python on the currently
edited .py �le, and you can use the Tools menu, Stop Executing command to
stop Python. Figure 5.2 shows SciTE running the tutorial5.py piece.

Figure 5.2.: Running Csound with Python in SciTE

Note also that you can load a Csound orchestra �le (CsoundVST.csd in this case)
into SciTE at the same time as you are editing or running a Python script.

5.3. Varying the Parameters

Once you have rendered this piece, you can experiment with changing the numbers
inside the generators, adding and removing segments from the generators, trying
more layers, and so on.
For example, try just the following changes: change the number of levels from 3

to 4, and change the second transform's MIDI key movement from -1 to +1. You
will see what two small changes do the overall structure of the piece.

52

A. Extra Features and Their

Requirements

If you wish to use any of these extra features, you should install the other required
software �rst according to its standard instructions.

ATS opcodes ATS is a library of C and Lisp functions for spectral Analysis, Trans-
formation, and Synthesis of sound based on a sinusoidal plus critical-band noise
model. A modeled sound in ATS can be sculpted using a variety of transfor-
mation functions. The ATS opcodes in Csound use these transformations, but
to use the opcodes, you must install ATS and analyze some sounds [29].

csoundapi~ is an external enabling Csound to run inside Pure Data, another SWSS.
To use it, you must install Pure Data [30].

tclcsound is a GUI front end for Csound that use the Tcl/Tk scripting environment.
To use tclcsound, you must install Tcl/Tk [31].

VST hosting opcodes enable Csound to use external VST plugins as opcodes. To
use them, of course, you must acquire them.

Java API To use this, you must install the Java software development kit (SDK)
[24].

Lisp API To use this, you must install the Lisp programming language [25].

Lua API To use this, you do not need to install the Lua programming language �
it comes in the Windows installer as luajit.exe! But, if you do use the Lua
API, you may to install various Lua libraries and helpers that you can �nd
starting at http://www.lua.org.

Python API to use this, you must install the Python programming language, specif-
ically version 2.4 [18].

53

csoundapi~
luajit.exe
http://www.lua.org

A. Extra Features and Their Requirements

54

B. Helper Applications

The following is a highly selective subset of the various applications that the Csound
community has found helpful for working with Csound. All are cross-platform and
should work, at a minimum, on both Windows and Linux. All are freely available,
open source applications.

B.1. Audio Editors

You can play Csound �les using the media player that comes with your operating
system, but a dedicated audio editor is much more useful. It will enable you to see
your sound�les, edit out clicks, normalize amplitudes, and more.

B.1.1. Audacity

Audacity [15] is the most powerful freely available, cross-platform audio editor. Get
it.

B.2. Text Editors

You can edit Csound scores and orchestras with a word processor, but you should
�nd a real programmer's editor much more useful. Each of the following has add-ons
for working with Csound �les.

B.2.1. Emacs

Emacs [32] has been widely used as a programmer's editor for decades. It has various
Csound environments.

B.2.2. SciTE

Not as powerful as Emacs, more user-friendly than vi. SciTE [14] is the editor that
I most often use with Csound. You can get a Csound syntax coloring package for
SciTE, which can run both Csound and Python from its own shell.

B.3. Composing Environments

A variety of specialized music composition environments have been developed, either
speci�cally for Csound, or that can work with Csound. These are mainly intended
for art music and algorithmic composition.

55

B. Helper Applications

B.3.1. athenaCL

Christopher Ariza's athenaCL [33] is a powerful Python-based composing environ-
ment that is designed to work with Csound, and which has incorporated within itself
many facilities from other earlier composition software. It is designed to be used as
an interactive command-line shell, but can also be used as a Python class library.

B.3.2. Blue

Steven Yi's Blue [34], written in Java, provides a visual composing environment for
Csound based on time lines. Blue can also run Python scripts.

B.3.3. CsoundVST

CsoundVST, by me, contains a set of classes that implement my idea of music graphs
[16]. It is the only composing environment that is distributed with Csound. You
must install Python to use the Silence classes. You can write Silence programs either
using CsoundVST itself as an editor and Python shell, or from a Python development
environment, or from a Python-aware text editor. I use either CsoundVST or SciTE
as my main composing environment.

B.3.4. Common Music

Rick Taube's Common Music [35] is a very powerful Lisp-based programming lan-
guage dedicated to algorithmic composition. It contains facilities for automatically
generating Csound scores.

B.3.5. Pure Data

Miller Puckette's Pure Data [30] is, itself, a widely used SWSS. However, it is also
used as a composing environment, and it contains a csoundapi~ external that can
receive events from Pure Data, route them to Csound using the Csound API, and
feed audio or events from Csound back into Pure Data.

B.4. Programming Languages

The following programming languages can use Csound through the Csound API.
Such languages are especially useful for algorithmic composition.

B.4.1. C/C++

C [3] and C++ [23] are still the standard programming languages for �systems pro-
gramming,� i.e. writing the fastest, most complex, and most demanding software.
Most operating systems are written in C, and most commercial applications are
written in C++ or C. You can use Csound as a �synthesis engine� in your own C
and C++ applications by using the Csound C or C++ APIs, and linking with the
Csound library.

56

B.4. Programming Languages

B.4.2. Java

Java [24] is another widely used language. It is only about a third as e�cient as C or
C++, but it is somewhat easier to program. The Csound API has a Java interface.

B.4.3. Lisp

Lisp [25] is the second-oldest (after FORTRAN) high-level programming language.
It is particularly noteworthy for being the implementation language for Common
Music, an excellent algorithmic composition system that is designed to work with
Csound.

B.4.4. Lua

Lua [26] is a lightweight, interpreted high-level language. As it is relatively new, it
features a good balance of features from earlier languages. On Windows, there is a
just-in-time compiler for Lua that can run Lua programs as fast as compiled Java
code (i.e., about 1/3 as fast as C or C++). The Windows installers for Csound
actually installs not only the Lua interface to the Csound API, but also the Lua
just-in-time compiler itself.

B.4.5. Python

Python [18] is my favorite programming language for working with Csound. I �nd
it is easier to read and write than other programming languages, and it has very
extensive libraries, e.g. for scienti�c computing and for computer graphics.
Although Python is an interpreted language and therefore does not run fast,

Python can call into precompiled extensions written in C or other e�cient languages.
The Csound API's Python interfaces are themselves examples of such extensions.

57

B. Helper Applications

58

C. Audio Quality

Currently, studio recording is done to stereo or surround sound (5.1 or 7.1) on
computers, hard disk recorders, or professional digital audio tape (DAT) recorders
to 24-bit or �oating-point samples at a rate of 48,000, 88,200, 96,000 or even 192,000
sample frames per second. This is �high-resolution audio.� At this time, the only
consumer electronics formats that can reproduce high-resolution audio are DVD-A
and SACD.

CD-quality audio is of distinctly lower resolution: stereo sound with 16 bit integer
samples at 44,100 samples per second.

High-resolution audio, on good speakers or earphones, sounds distinctly airy,
present, spacious, and undistorted. CD-quality audio, by contrast, can sound �at,
shrill, harsh, and �at or boxed in. Usually, this is the result of cumulative mistakes
made in this less forgiving medium � CDs actually are precise enough to reproduce
most of what we hear. Therefore, CDs made by experts can sound very good in-
deed, except for their more limited dynamic range and less detailed quiet sounds.
Normally, it takes educated ears to hear these di�erences.

Vinyl records of high quality are not directly comparable to digital recordings.
They have their own virtues and �aws. They are more detailed, airy, and spacious
than CDs, but can have harmonic distortion, rumbling, hiss, and crackling. In gen-
eral, well-made records, especially if pressed from direct metal masters, are roughly
equal to high-resolution audio in aesthetic quality, even if they are not really as
precise.

If you are not used to high-resolution audio, you will need to educate your hearing
before you can achieve it (or even hear it). Develop your ears by listening critically
to outstanding work on �at, deep, high-resolution audio systems, e.g. real studio
monitor speakers or good headphones, at loud but not overwhelming volume in a
quiet, sound-adsorbent environment. Listen to your own work in direct comparison.
Learn to be objective and to set your own feelings aside, and to hear what others
say about your work without getting defensive.

Listen to live orchestral and chamber music, and big-band jazz, from good en-
sembles, in good halls, from good seats. This is the gold standard for sound � even
high-resolution audio can't touch it. Also listen to outstanding recordings of orches-
tral, chamber, piano, rock, folk, jazz, New Age, �lm music (and again, �lm music)
and of course computer music. For computer music, listen to academic computer
music, EA, "dance music", mods and demos, and even chip tunes. Each of these
genres has something valuable to say about audio beauty and music production
quality that is relevant to computer music.

Csound is eminently capable of high-resolution audio. It can render to any number
of channels, at any sampling rate, using �oating-point samples. Csound also con-
tains high-quality software implementations of all the e�ects applied by mastering

59

C. Audio Quality

engineers. Therefore, Csound is as good or better than the best studio gear.

If you have a professional or semi-professional audio interface on your computer,
you can play high-resolution sound�les made with Csound (although you will not
hear their full dynamic range unless you have professional gear).

Speci�c technical advice in decreasing order of importance (all this assumes you
don't care how long it takes to render a piece, only if it sounds good):

1. Some of the sounds made by Csound have no counterpart in other kinds of
music. They may contain excessive high frequencies, aliasing distortion, or
other kinds of noise. On the other hand, the sounds can be of extreme clarity
and precision � hyper-real. You need to be constantly aware of what your
sounds actually sound like.

2. Always render to �oating-point sound�les at 88,200 samples per second. You
can translate them to 24 bits or to CD quality later if you want, but having the
extra precision and dynamic range is vital. There is no audible di�erence in
quality between 88,200 and 96,000 samples per second, but 88,200 can trans-
lated to CD quality by direct downsampling, whereas 96,000 requires fancy
�ltering and lots of time.

3. If you use sampled sounds, use the best samples you can possibly �nd. Pay if
you must!

4. Also if you use sampled sounds, beware of their own ambience clashing with
any reverberation or other ambience you set up using Csound. Samples may
also have unwanted noise � it may be possible to de-noise them (Csound has
facilities for doing this too).

5. Use a �de-clicking� envelope to wrap all your instrument �nal output signals.

6. Watch out for aliasing, which can make sounds buzzy or harsh, in frequency
modulation and wavetable oscillators. Aliasing happens when the signal con-
tains frequencies above half the sampling rate (the Nyquist frequency), so that
under digital sampling they re�ect or fold back under the Nyquist frequency.
For so-called �analog� sounds with simple waveforms such as square or saw-
tooth waves, use non-aliasing opcodes such as vco or vco2. You do not need
to worry about aliasing with plain sine or cosine waves.

7. For �nal renderings, always render with ksmps=1.

8. Use a-rate variables for envelopes and, in general, wherever opcodes permit.
This enables decent results with ksmps=100 or so.

9. Use only the most precise interpolating oscillators, such as poscil or poscil3.

10. For wavetable oscillators, the larger the wavetable, the less noisy the signal;
65537 is not too big.

60

11. Be vigilant for artifacts and noise introduced by various digital signal process-
ing algorithms, especially echoes in reverberation. Don't over-use e�ects � this
is a very common error that you can �x by listening to good examples of studio
and live recording.

12. Try rendering with dither (-Z option).

13. Experiment with some modest compression, e.g. by using the compress or dam
opcodes.

14. Use the 64-bit sample version of Csound.

61

C. Audio Quality

62

Bibliography

[1] Barry Vercoe, John �tch, Istvan Varga, Michael Gogins, et al. Csound. http:
//csound.sourceforge.net. 1

[2] Max Mathews. The Technology of Computer Music. The MIT Press, Cam-
bridge, Massachusetts, 1969. 1

[3] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language.
Prentiss-Hall, 2 edition, 1988. 1, 47, 56

[4] Richard Boulanger, editor. The Csound Book. The MIT Press, Cambridge,
Massachusetts, 2000. 1, 36

[5] Riccardo Bianchini and Alessandro Cipiriani. Virtual Sound: Sound Synthesis

and Signal Processing � Theory and Practice with Csound. ConTempo, Rome,
1998. English edition (2000), translated by Agostino Di Scipio. 1, 36

[6] Andrew Horner and Lydia Ayers. Cooking with Csound Part 1: Woodwind and

Brass Recipes. A-R Editions, Middletown, Wisconsin, 2002. 1, 36

[7] James McCartney et al. SuperCollider, 2004. http://supercollider.

sourceforge.net. 1

[8] Cycling 74. Max/MSP. http://www.cycling74.com/products/maxmsp.html.
1

[9] Native Instruments. Reaktor 4. http://www.native-instruments.com. 1

[10] Barry Vercoe, John �tch, et al. The Canonical Csound Reference Manual,
2006. http://www.csounds.com/manual. 1, 10

[11] Perry R. Cook. Real Sound Synthesis for Interactive Applications. A.K. Peters,
Natick, Massachusetts, 2002. http://ccrma-www.stanford.edu/software/

stk. 4

[12] Kelly Fitz, Lippold Haken, et al. Loris. http://www.cerlsoundgroup.org/

Loris. 4

[13] Michael Gogins. Double Blind Listening Tests of Csound 5 Compiled with
Single-Precision and Double-Precision Samples, 2006. http://ruccas.org/

pub/Gogins/csoundabx.pdf. 4

[14] SciTE: A Free Source Code Editor for Win32 and X, 2006. http://www.

scintilla.org/SciTE.html. 9, 10, 51, 55

63

http://csound.sourceforge.net
http://csound.sourceforge.net
http://supercollider.sourceforge.net
http://supercollider.sourceforge.net
http://www.cycling74.com/products/maxmsp.html
http://www.native-instruments.com
http://www.csounds.com/manual
http://ccrma-www.stanford.edu/software/stk
http://ccrma-www.stanford.edu/software/stk
http://www.cerlsoundgroup.org/Loris
http://www.cerlsoundgroup.org/Loris
http://ruccas.org/pub/Gogins/csoundabx.pdf
http://ruccas.org/pub/Gogins/csoundabx.pdf
http://www.scintilla.org/SciTE.html
http://www.scintilla.org/SciTE.html

Bibliography

[15] Audacity. http://audacity.sourceforge.net. 10, 55

[16] Michael Gogins. Music Graphs for Algorithmic Composition and Synthesis with
an Extensible Implementation in Java. In Mary Simoni, editor, Proceedings of
the 1998 International Computer Music Conference, pages 369�376, San Fran-
cisco, California, 1998. International Computer Music Association. 37, 48, 56

[17] Steinberg Media Technologies GmbH. http://www.steinberg.net. 37

[18] Guido van Rossum. Python, 2006. http://www.python.org. 37, 47, 53, 57

[19] Lejaren Hiller and L.M. Isaacson, editors. Experimental Music: Composition

with an Electronic Computer. McGraw�Hill, New York, New York, 1959. 47

[20] Tom Johnson. Self-Similar Melodies. Editions 75, Paris, 1996. 47

[21] David Cope. The Algorithmic Composer. Number 16 in Computer Music and
Digital Audio. A-R Editions, Middleton, Wisconsin, 2000. 47

[22] Heinrich K. Taube. Notes from the Metalevel. http://pinhead.music.uiuc.
edu/~hkt/nm/. 47

[23] Bjarne Stroustrup. The C++ Programming Language, 2006.
http://www.research.att.com/ bs/C++.html. 47, 56

[24] Sun Developer Network. The Source for Java Developers, 2006. http://java.
sun.com. 47, 53, 57

[25] Association of Lisp Users, 2006. http://www.lisp.org/alu/home. 47, 53, 57

[26] Robert Ierusalemichy, Waldemar Celes, and Luiz Henrique de Figueirido. The
Programming Language Lua, 2006. http://www.lua.org. 47, 57

[27] Guido van Rossum and Jr. (Ed.) Fred L. Drake. Python Tutorial, 2006.
http://docs.python.org/tut/tut.html. 48

[28] Heinz-Otto Peitgen, Hartmut Jürgens, and Dietmar Saupe. Chaos and fractals:
New frontiers of science. In Chaos and Fractals: New Frontiers of Science,
chapter 5, pages 229�296. Springer-Verlag, 1992. 48

[29] Juan Pampin, Oscar Pablo Di Liscia, Pete Moss, and Alex
Norman. Analysis � transformation � synthesis (ats), 2006.
http://www.dxarts.washington.edu/ats/. 53

[30] Miller Puckette. Pure Data. http://puredata.info. 53, 56

[31] Tcl Developer Xchange, 2006. http://www.tcl.tk. 53

[32] Richard W. Stallman et al. GNU Emacs, 2006. http://www.gnu.org/

software/emacs/. 55

[33] Christopher Ariza. athenaCL. http://www.flexatone.net/athena.html. 56

64

http://audacity.sourceforge.net
http://www.steinberg.net
http://www.python.org
http://pinhead.music.uiuc.edu/~hkt/nm/
http://pinhead.music.uiuc.edu/~hkt/nm/
http://java.sun.com
http://java.sun.com
http://www.lisp.org/alu/home
http://www.lua.org
http://puredata.info
http://www.tcl.tk
http://www.gnu.org/software/emacs/
http://www.gnu.org/software/emacs/
http://www.flexatone.net/athena.html

Bibliography

[34] Steven Yi. blue. http://csounds.com/stevenyi/blue. 56

[35] Rick Taube. Common Music. http://commonmusic.sourceforge.net/doc.
56

65

http://csounds.com/stevenyi/blue
http://commonmusic.sourceforge.net/doc

	Introduction
	Getting Started
	On Windows
	Obtaining Csound
	Installing Csound
	Configuring Csound
	Off-Line Rendering
	Real-Time MIDI Performance

	On Linux
	On Apple

	Writing Orchestras and Scores
	Signal Flow Graphs
	How Csound Works
	Csound Files
	Performance Loop

	Writing Your First Piece
	Simple Sine Wave
	Simple Sine Wave, De-Clicked
	Simple Sine Wave, De-Clicked, ADSR Envelope
	Frequency Modulation, De-Clicked, ADSR Envelope
	Frequency Modulation, De-Clicked, ADSR Envelope, Time-Varying Modulation
	Frequency Modulation, De-Clicked, ADSR Envelope, Time-Varying Modulation, Stereo Phasing
	MIDI Performance

	Using CsoundVST
	Configuring CsoundVST
	Using CsoundVST
	Create a Cubase Song
	Create an Instance of CsoundVST
	Load a Csound Orchestra
	Configure the Orchestra for VST
	Compile the Orchestra
	Track Setup
	MIDI Channel Setup
	Write Some Music

	Python Scripting
	Running Csound from Python
	Generating a Score
	Varying the Parameters

	Extra Features and Their Requirements
	Helper Applications
	Audio Editors
	Audacity

	Text Editors
	Emacs
	SciTE

	Composing Environments
	athenaCL
	Blue
	CsoundVST
	Common Music
	Pure Data

	Programming Languages
	C/C++
	Java
	Lisp
	Lua
	Python

	Audio Quality

