

i

A Csound Tutorial

Michael Gogins
gogins@pipeline.com

June 7, 2007

Contents

1 Introduction 1
2 Getting Started 3
2.1 On Windows e e 3
2.1.1 Obtaining Csound 3
2.1.2 Inmstalling Csound 4
2.1.3 Configuring Csound 9
2.1.4 Off-Line Rendering 12
2.1.5 Real-Time MIDI Performance 17
2.2 OnLinux e 21
23 OnApple . . . e 21
3 Writing Orchestras and Scores 23
3.1 Signal Flow Graphs 23
3.2 How Csound Works, 24
321 Csound Files 24
3.2.2 Performance Loop, 25
3.3 Writing Your First Piece o oo 26
3.3.1 Simple Sine Wave L. 28
3.3.2 Simple Sine Wave, De-Clicked 30
3.3.3 Simple Sine Wave, De-Clicked, ADSR Envelope 31
3.3.4 Frequency Modulation, De-Clicked, ADSR Envelope 31

3.3.5 Frequency Modulation, De-Clicked, ADSR Envelope, Time-
Varying Modulation 32

3.3.6 Frequency Modulation, De-Clicked, ADSR Envelope, Time-
Varying Modulation, Stereo Phasing 33
3.3.7 MIDI Performance 33
4 Using CsoundVST 37
4.1 Configuring CsoundVST 37
4.2 Using CsoundVST 38
4.2.1 Create a Cubase Song 40
4.2.2 Create an Instance of CsoundVST 40
4.2.3 Load a Csound Orchestra 42
4.2.4 Configure the Orchestra for VST 42
4.2.5 Compile the Orchestra 43
4.2.6 Track Setup 44

iii

Contents

v

4.2.7 MIDI Channel Setup
4.2.8 Write Some Music o000
Python Scripting
5.1 Running Csound from Python
5.2 Generating a Score
5.3 Varying the Parameters

Extra Features and Their Requirements

Helper Applications

B.1 Audio Editors

B.1.1 Audacity e

B.2 Text Editors .
B.2.1 Emacs
B.2.2 SciTE

B.3 Composing Environments 000
B.3.1 athenaCL

B.3.2 Blue .

B.3.3 CsoundVST
B.3.4 Common Music
B.3.5 PureData
B.4 Programming Languages

B.4.1 C/C++
B.4.2 Java .
B.4.3 Lisp .
B.4.4 Lua .
B.4.5 Python

Audio Quality

47
48
49
52

53

55
95
95
95
95
95
25
o6
26
26
96
o6
o6
26
a7
a7
a7
57

59

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

5.1
5.2

Download Pageo 3
Windows Installer 5
Csound License 5
Csound Location 6
Csound Menu Location 6
Csound Installing 7
Installation Completed 7
Csound Start Menu 8
Csound GUI 8
Configuring csoundbgui 11
Windows Console 13
Command-Line Rendering 15
General Options 16
GUI Rendering 17
Playing Output Soundfile 18
Available Interfaces oL 20
MIDI Performance 21
tutorial2.csd L. 30
Playing tutorial2.csd Live. 35
Importing CsoundVST, 37
CsoundVST Plugin Path 38
CsoundVST Loaded 39
Creating a New Project 40
Creating a New Track 41
Creating a New Instance of CsoundVST 41
Loading an Orchestra 42
Compiled Orchestra 44
Channel Setup o 45
Scoring with Csound 46
Running Csound with Python inIdle 50
Running Csound with Python in SciTE 52

List of Figures

vi

1. Introduction

In the words of its author, Barry Vercoe, Csound [1] is a “sound processing language.”
Technically speaking, Csound is a general-purpose, user-programmable software syn-
thesis system (SWSS). Like most SWSS, Csound uses Max Mathews’ original 1957
unit generator design [2]. However, Csound was the first SWSS to be written in the
C programming language [3]. Being written in C, which is the most efficient and
most portable high-level language, and also very widely used, has ensured Csound’s
survival and growth.

Vercoe wrote Csound at the Massachusetts Institute of Technology in 1984. Ever
since then, Csound has received contributions from researchers, programmers, and
musicians all over the world. Csound runs on Unix, Linux, Windows, the Macin-
tosh, and other operating systems. Csound can be extended by writing plugin unit
generators, and Csound itself runs as a VST plugin. Csound can be programmed
in C, C++, Java, Lisp, Lua, and Python. Csound is taught in a number of leading
universities and conservatories. Books have been written on how to use it [4, 5, 6].
Csound can be compiled to use double-precision floating point audio samples for the
highest sound quality.

In short, Csound must be considered one of the most powerful musical instruments
ever created.

Csound is, perhaps, harder to use than such competing programmable synthe-
sizers as SuperCollider [7], Max [8], or Reaktor [9]. One difficulty is that Csound
was written a generation ago as a Unix application, and is controlled by dozens of
arcane command-line options (although, precisely because it is older, Csound runs
faster and has more unit generators). Another difficulty is that Csound lacks some
convenient features of other high-level programming languages.

Still, once you learn a few things, Csound is not really so hard to use. The sound
processing language turns out to be simple, the documentation is not so bad, Csound
always tries to tell you what it is doing (or why it is not doing what you told it)...
and the power begins to unfold.

The purpose of this tutorial is to teach you those often neglected first few things.
There are three introductory sections, one each for Windows (Section 2.1), Linux
(Section 2.2), and Apple computers (Section 2.3), that lead you, step by step,
through obtaining, installing, configuring, and running Csound (also see the Csound
Reference Manual [10]). Then follow chapters on writing your own orchestras and
scores (Chapter 3), using CsoundVST as a VST plugin in a studio sequencer (Chap-
ter 4), and writing Python scripts to do algorithmic composition using the Csound
application programming interface (API) (Chapter 5). Finally, there is a list of
software required to use the extra features of Csound (Appendix A), a list of other
helper applications and languages for Csound (Appendix B), and some advice on
how to achieve good sound quality with Csound (Appendix C).

1. Introduction

2. Getting Started

This chapter contains the same information — how to obtain, install, configure, and
run Csound — repeated for each of the main personal computer operating systems
in use today: Windows, Linux, and Macintosh OS X.

2.1. On Windows

2.1.1. Obtaining Csound

Go to http://csound.sourceforge.net/ using your Web browser. Click on the
Main Download page link on that page. On the download page, click on the
link to the csound5 package. You will see a list of releases. At the time this
was written, the most recent downloadable version of Csound for Windows is 5.03.
You will see a csound5.03 link on the page. Click on that, and it will expand
to show two programs: Csound5.03-win32-d.exe and Csound5.03-win32-f.exe.
Both of these programs are Windows installers for Csound 5.03 (Figure 2.1). For
later versions and releases, substitute the actual version number for 5.03 in the links
and filenames.

¥)SourceForge.net: Files - Mozilla Firefox =l

Fie Edt Vew Go Bookmarks Took Help

@E-op- =l @ [@ httpusourceforae.netior . php?groUp | kage_id=120482 8- 0 [Cl

SOURCER. RGE
shet) Logn - Greate Acsount | O, [Saftvare Search | Advanced

SEnet Projects My Page

Hew Projects &

SF net > Projects » Csound » Files: 609

Csound & ponate 1o project [stats - Activin: 90.26% [T

Summary | Admin | Home Page | Forums | Tracker | Manual | Bugs | Support Requests | Patches | Feature Requests | Mail | Tasks | Doss | Screenshots | News | CVS | Files Q [Fies Searsh | Advanced
sourctR RGE”
You have selected to download csounds AMDZ1 e

Below is a list of releases and fles vontained in this package. Before downloading, you may want to read the Release Notes.

Release (ste) Filename Size (bytes) Downloads Architecture

Latezt Elesound5.03 piotes] ooe-onizz 00,
Csound5.03-win32-d. exe 11877267 558 386 exe (32-bit Windows) _
Csound5.03-win32-f exe 10088676 256 i385 exe (32-bit Vindows)

=) e50und5.02 (otes) 2005-05:07 1407

csoundd. 01 [notes] (2005-0225 13:09)

[csound5.00 piotes] ooe-oz01 i1

View older releases in the csound3 package »
Totals: 4 62 438161608 14864

[Find a Tech Job B seorsortinks B Fricosrabber Products |

SEARCH JOBS SALARIES 10B TOOLS Download Oracle JDeveloper for free ta develop EJB 3.0 components FAX575 Personal Plain Paper Fax, Phone & Copier : $37.99 =l
[Done
Bset] (G HRSE IAOQULCANDIBET TN ORMOBE O T DG W ([S2reron- & wncs .| M mmews... | [Tretnicce.. | B2ertho..o| [eg2 s midl sl @0ty 12917
= =] (¢ Dijueshl.. | 12 esoun... -| () Inbox - 0.0 siencel.... | T tutorial. pdf = r aturaay
4PEOEF AL e m =) 3] V@E2@MeLll 1 satu

Figure 2.1.: Download Page

http://csound.sourceforge.net/

2. Getting Started

Csound5.03-win32-f.exe installs a version of Csound that has been compiled to
use 32-bit floating point numbers internally to represent audio samples. As a result,
it runs about 15% faster than Csound5.03-win32-d.exe.

Csound5.03-win32-d.exe installs a more complete version of Csound, which has
been compiled to use 64-bit floating point numbers for audio samples, and which
includes opcodes for making instruments based on Perry Cook’s Synthesis Toolkit in
C+-+ [11], and for using Kelly Fitz and Lippold Haken’s Loris system for doing sound
modeling, morphing, and manipulation using the Reassigned Bandwidth-Enhanced
Additive Sound Model [12]|. Also, Csound5.03-win32-d.exe is a slightly more ac-
curate synthesizer than Csound5.03-win32-f.exe [13].

If you are putting on live shows using Csound with complex instruments, and
need extra efficiency, download Csound56.03-win32-f.exe. Otherwise, you will be
better off with Csound5.03-win32-d.exe. The rest of this tutorial assumes you
have chosen Csound5.03-win32-d.exe.

Click on the link to Csound5.03-win32-d.exe. Your Web browser should now
take you to a Web page listing mirrors from which you may download the installer.
Click on the link to a mirror, and your browser should automatically begin to down-
load the file to your computer’s hard disk. Make a note of where the download has
been saved on your hard disk.

2.1.2. Installing Csound

Csound5.03-win32-d.exe comes with a number of extra features that require other
software to work. These extras and their requirements are listed in Appendix A.
Please note: if you do not install any of this other software, the standard features
of Csound will still work!

To install Csound, simply run the installer program. It will display a dialog box
(Figure 2.2).

Click on the Next > button to proceed. You should now see the Csound license
agreement (Figure 2.3). You must click on the I Agree button to indicate your
acceptance of the Csound license before you can install Csound.

Tell the installer where to put Csound. Although the default location is the
standard Windows Program Files directory, Csound may actually work better if
you install it in a directory without any spaces in the pathname, such as C:\Csound
(Figure 2.4).

Tell Csound where to put the Windows Start Menu folder for Csound. You can
skip this step if you want, but I recommend that you accept the default location
(Figure 2.5).

Click on the Install button. The installer will now unpack and install Csound in
your selected location (Figure 2.6). When the installer has finished, you should see
the message shown in Figure 2.7.

Once Csound has been installed, open the Windows Start Menu, where you
should find a Csound submenu containing various Csound programs and documen-
tation (Figure 2.8).

Try running csoundbgui, which is a relatively user-friendly front end for Csound
with a basic graphical user interface (Figure 2.9).

4

C: Csound

Csound Setup

Welcome to the Csound Setup
Wizard

It is recommended that vou close all other applications

relevant system Files without having to reboot vour
compuker,

Click Mext to continue,

This wizard will guide vaou through the installation of Csound,

befare starting Setup. This will make it possible to update

2.1. On Windows

=101

Cancel |

Figure 2.2.: Windows Installer

RI=E

License Agreement

Please review the license terms before installing Csound.

Press Page Down ko see the rest of the agreement,

CSOUMD AMD CSOUMD WST
Version 5,03 beta

A user-programmable and user-extensible sound processing language
and software synthesizer,

Csound is copyright (c) 1991 Barry Vercoe, John Ffitch,
CsoundWST is copyright {c) 2001 by Michael Gogins,
VST Plugln Intetface Technology by Steinberg Soft- und Hardware GmbH

quqnd anc_I_Csu;uundVST_ are free soFtw_ar_e; wau can redistribute_ thn_al_'n

If vou accept the kerms of the agreement, click I Agree to continue, You must accept the
agreement ta install Csound.

Tdullsaft Install Systenm vz, 06

=l

< Back I I Agree I Cancel

Figure 2.3.: Csound License

2. Getting Started

=IES

Choose Install Location (‘

)

Choose the Folder in which to install Csound.

Setup will install Csound in the Following Folder, Tainstall in a different Folder, click Browse and
select another Folder. Click Mext to continue,

Destination Folder

I :\Csoundl] Browse, .. |

Space required; 32.7ME
Space available: 44.9G6

Iullsaft Install Systen w2, 06

< Back I Mext = I Cancel

Figure 2.4.: Csound Location

e

Choose Start Menu Folder (-

'y

Choose a Start Menu Folder For the Csound shortcuts,

Select the Start Menu Folder in which wou would like to create the program's shortouts, ¥You
can also enter a name ko create a new Folder,

ACcessaries -
Administrative Tools

Adobe

Blondshed Dew-C++

Czound

CVD-RAM

Games

hp photosmart

Intel PROSeL Wireless

Intervideo \WinDVD

Interviden WinDVD Creator 2 d!

[” Do not create shortouts
Mullsaft Install Systen vz, 06

< Back I Install I Cancel |

Figure 2.5.: Csound Menu Location

2.1. On Windows

RISE

Installing P
Please wait while Csound is being installed. r\ 3 7

Extract: PrefaceTop.html... 100%

I

Mullsaft Install Systenm w2, 06

% Back | et = | Cance|

Figure 2.6.: Csound Installing

RI=E

Completing the Csound Setup
Wizard

Csound has been installed on vour computer,

Click, Finish to close this wizard,

% Back

Cance |

Figure 2.7.: Installation Completed

2. Getting Started

Accessories
DYD-RAM
I Games

Intel PROSEL Wireless

»
»
»
»
7] Inter¥ideo WirDVD »
) Inkervideo WInDVD Creatar 2 »
QuickTime »
1) Real »
I Sonic 3
Startup >
) Windows Digial Media Enhancemerts
< adobe Reader 7.0
& Internet Explorer
@ Media Center
i Remote Assistance
(5) Windows Media Flayer
% Windows Messenger
G, Windows Movie Maker
() Mozila Firefox

OpenOffice.org 2.0
Steinberg Cubase 543
I M-dudio
) Nikon Sean 4
vnamp
IT) Adnministrative Tocls

Psycle

Plogue

(@ set Program Access and Defaults

= winsaund
A2 Windows Catalog

&) hudacity 1.3 Bets) APIReference
% windows Updats 2 v + 1 csound
Programs. » Togls » [CsoundvsT
(% Documents [2] License

@ Settings 3 Uninstal

) search &) Manual

) Help and Support

2 Run..,

Log Off Michael
(8 Turn FF Computer.

QLCANDP PRBET DX WO E O TG T | @ unxandtinu., | & wies-oau... | /8 vivewezifdr... | [T] Texniccente 11014 M
5] Bz pythorw ~| (g Ditutatthome... | 4 csound finish... | Hrutorislor | @2 B saturday

Figure 2.8.: Csound Start Menu

)
Csound console messages

Im
I o1

| Ll omheswacsn e
T scorene e
T ottt Edit

Options T
Utilities
H | “y . | ._l Messages

o |
Goto | |0 Seconds Help Tl

FORMOE O EOS T M | @ umcandunu. | & wincs- [pu... | 8 imewszd.. |
B2 prthorw | L Ditetthome... | 1 csoundvet.pn... |[T2 csoundsa..

11:45 &M
Saturday

#start el Od PBEED

Figure 2.9.: Csound GUI

2.1. On Windows

2.1.3. Configuring Csound

This section assumes that you have installed Csound in the C:\Csound directory. In
the following, replace this with your actual installation directory.

Configuring .csoundrc

Using a text editor (not a word processor!)!, take a look at the C:\Csound\ . csoundrc
file. This file provides default command-line options that take effect each time you
run Csound, unless you provide another value for the option. As installed, it reads:

-d -m135 -HO -s -W -o dac -+rtaudio=pa -b 128 -B 2048 --expression-opt
The meaning of these options is as follows:
-d Do not show graphs of function tables.

-m135 Print informational messages about audio amplitude, audio samples out of
range, warnings, and errors, using color codes.

-HO Do not print a heartbeat at each kperiod.?
-s Use 16-bit short integers for audio samples.
-W Use the standard Microsoft WAV format for soundfiles.

-0 dac Send real-time audio output to your computer’s default audio interface (i.e.,
digital-to-audio converter).

-+rtaudio=pa Use the PortAudio driver for real-time audio (works on Windows,
Linux and Apple).

-b 128 The number of audio sample frames® in Csound’s software buffer.

-B 2048 The number of audio sample frames in the audio interface’s hardware
buffer. This should be a small (e.g. 2 to 10) integral multiple of -b.

Do not use the default text editor on Windows, which is Notepad! Csound files typically
have Unix line endings (linefeed only), whereas Notepad only works properly with Windows
line endings (linefeed plus carriage return). I recommend that you install and use SciTE
[14], a general-purpose text editor for which you can get Csound orchestra language syn-
tax coloring. You can obtain Csound API and orchestra language syntax coloring prop-
erties from http://solipse.free.fr/Api_&_csound.properties/csound.api and http://
solipse.free.fr/Api_&_csound.properties/csound.properties, respectively. Then in
your global options file, around line 539 add a new line Csound|orc| |\ and around line 611
add a new line import csound. Line numbers are very approximate, but you should see similar
statements for other languages in the correct locations. You can even run Csound from SciTE.
If you must use an existing Windows program, use WordPad, not Notepad, and be sure to save
your work as a plain text file with the proper filename extension.

2A kperiod is one Csound control sample, during which Csound computes 1 or more audio sample
frames. By computing anywhere from 10 to a hundred or so sample frames per kperiod, Csound
can run much more efficiently.

3 An audio sample is one number. An audio sample frame consists one number for each channel
of an audio signal. When people say “sample rate,” they usually mean “sample frame rate.”

C: Csound
C: Csound .csoundrc
http://solipse.free.fr/Api_&_csound.properties/csound.api
http://solipse.free.fr/Api_&_csound.properties/csound.properties
http://solipse.free.fr/Api_&_csound.properties/csound.properties

2. Getting Started

-expression-opt Tell the Csound orchestra language compiler to optimize arith-
metic and logic expressions.

For the complete meaning of all Csound options, see the reference manual [10]. The
above options should work for real-time audio output on all operating systems and
computers. For now, there is no need to change these options, but later you may
wish to modify them according to what you learn about your computer and audio
interface. The layers of buffering in Csound work as follows:

1. Every ksmps sample frames, Csound reads audio from the spin buffer into
the in family of opcodes; gets score events from the score, MIDI, and other
real-time control queues and dispatches those events to instrument instances;
writes audio from the out family of opcodes to the spout buffer; and copies the
spout buffer to the “software” or -b buffer. Consequently, ksmps determines
the minimum granularity of event and audio processing.

2. Every -b sample frames, Csound copies the “software” or -b buffer to the
“hardware” or -B buffer. If -b is a multiple of ksmps, then if Csound is late
producing a spout buffer, the -b buffer contains enough audio to give Csound
a chance to catch up during the next ksmps.

3. Every -B sample frames, the sound card plays the “hardware” or -B buffer. If
-B is a multiple of -b, then if Csound is late producing a -b buffer, the -B
buffer still contains enough audio so that the sound card can keep playing while
Csound catches up during the next -b period. Consequently, -B determines
the minimum latency of audio input and output.

Csound configuration is affected by a number of environment variables,* which
are all documented in the Csound manual [10].

Configuring csoundbgui

Run csoundbgui. Click on the Options menu button, and select the General item,
which will display a dialog box for configuring csound5gui (Figure 2.9).

I suggest that you change the default values for Text editor and Sound editor
to helper applications I think you will find much more useful. I recommend SciTE
[14] as the text editor,” and Audacity [15] as the sound editor, but there are other
options (see Appendix B).

4 An environment variable is a string in the form NAME=value that the user sets, and the operating
system remembers and passes along to programs when they start. The program can look up the
value that has been assigned to the variable in order to locate directories and files, set numbers,
and so on. The proper way to set environment variables depends on your version of Windows.
On Windows XP, go to the Start Menu, Settings item, Control Panel item, System icon,
Advanced tab, Environment Variables button to bring up a dialog box where you can
create, edit, or delete persistent environment variables.

5If you use SciTE, be sure to configure it to use linefeeds only for line endings, by using the
Options menu, Open Global Options File command to put the line eol.mode=LF into
SciTE’s global options file.

10

2.1. On Windows

Il Csound GUI options

"CAProgram Filestiindows Media F'Iaﬁ_.renwm|
explorer "CAProgram FiIelesuundldnclmanu|
]

Figure 2.10.: Configuring csound5gui

11

2. Getting Started

2.1.4. Off-Line Rendering

Off-line rendering is rendering music as a soundfile, before you hear it. For complex
pieces, this can take much longer than listening to the finished piece. This concept
may be unfamiliar to you, but it does give you the power to make music that would
otherwise be completely impossible.

Some other music software can do off-line rendering under one name or another.
Cubase, for example, calls it “Export Audio Mixdown.” Csound was originally de-
signed only for off-line rendering. We will use off-line rendering to create your first
Csound piece, because it does not require any configuration for your audio interface
— it is guaranteed to work!

Csound is capable of state-of-the-art audio quality, equal to or better than the best
recording gear. For more discussion of how to achieve this quality, see Appendix
C. The short piece you are about to render has been modified to render at high
resolution, so it should serve as something of a demonstration of what Csound can
do.

As you may have gathered, there many ways of running Csound. The two ways
we are concerned with here are the original way, as a command-line program,® and
as a GUI program. We will run the piece both ways.

Using the Command Line

Open a console window (Windows Start menu, Run item, type cmd into the Open:
field, press the ENTER key). Type C: [ENTER] ([ENTER] means press the ENTER
key) or whatever the drive is where you installed Csound). Type cd \Csound [ENTER]
to navigate to the Csound directory. Type csound [ENTER] to run Csound (Figure
2.11).

The text that you see consists of messages that Csound has printed out. You did
not supply the required command-line options to Csound, so it has printed out a sum-
mary of the options to help you. To see even more options, type csound --help [ENTER].

Now, type csound examples\xanadu-high-resolution.csd [ENTER]. The .csd
file contains in plain text, like all . csd files, a Csound score, a Csound orchestra for
rendering the score, and command-line options in the <CsOptions> tag to control
the rendering. The meanings of the options for this piece are as follows:

-R Rewrite the header of the output soundfile periodically, so that if you stop
Csound in mid-performance, or it crashes, you should still be able to hear
as much of the soundfile as was written before Csound stopped.

-W Use the standard Microsoft WAV soundfile format.

-Z Dither the signal just before writing to the output. Dither is noise that is applied
to the signal in order to mask and hide other noise.

SWhat is the command line? Every operating system has one. It is a “console window” that has a
prompt where the user can type in text commands. On Windows, you can open the console by
going to the Start menu, selecting the Run item, typing cmd in the Open: field, and clicking
the OK button. When you see the prompt, type dir and press the ENTER key as an example
of executing a command.

12

2.1. On Windows

ng default Tanguag

module for
and MIDI modu

at output
t out

GENOL
MIDI outpu

Figure 2.11.: Windows Console

13

2. Getting Started

-f Use floating-point numbers to represent audio samples. Float samples have the
greatest dynamic range and precision.

-0 xanadu.wav Output to a soundfile named xanadu.wav.

The messages (Figure 2.12) list the instruments that Csound has compiled, e.g.
instr 1, instr 2, and so on (more on this later), then some other information
about how Csound has compiled the orchestra and score in the .csd file, then the
name of the output soundfile. Then come messages indicating the progress and
status of rendering, e.g. new alloc for instr 1: indicates that a new instance of
instrument 1 has been created to satisfy the demands of the score. Messages starting
with B, e.g.

B 15.500 .. 22.500 T 22.500 TT 22.500 M: 9286.3 9200.8
B 22.500 .. 22.600 T 22.600 TT 22.600 M: 5744.3 6443.3
B 22.600 .. 22.700 T 22.700 TT 22.700 M: 7632.9 7294.0
B 22.700 .. 22.800 T 22.800 TT 22.800 M: 88565.0 7862.5
B 22.800 .. 22.900 T 22.900 TT 22.900 M: 8845.9 7613.5
B 22.900 .. 23.000 T 23.000 TT 23.000 M: 8541.2 7858.1

indicate blocks of synthesis, including the time within a marked section of the score
T, the total time for the whole score TT, and the mean amplitude M of the signal in
each channel of the audio output during that time. These amplitudes are critical, for
Csound can easily produce a signal that is so loud it clips. Every time this happens,
Csound prints a warning message. A new block begins for each new score event.

There are various ways to now actually hear the piece. All installations of Win-
dows feature the Windows media player, which can play high-resolution soundfiles,
and which is usually accessible on the Windows task bar. Open the media player,
and use the File menu, Open command to navigate to the Csound directory and
open the xanadu.wav file. You can now play the piece, although of course it will
sound much better if you have an audio interface running into monitor speakers or
good home stereo speakers. The piece may also sound good through headphones
plugged directly into your computer, though that will depend on the quality of
your computer’s audio systems — newer computers have much better sound. Media
Center PCs may even have high-resolution audio built in.

Using csoundb5gui

Now render the same piece using a GUI front-end to Csound. Run csoundb5gui.
Click on the square button with three dots next to the Orchestra/CSD text field.
This will open a file dialog. Navigate to the C:\Csound\examples directory and
load the xanadu-high-resolution.csd file. Click on the Edit button next to the
Orchestra/CSD field. You can arrange or tile the control window, the messages
window, and the editor so that you can move back and forth for more efficient
working.

csoundbgui will, by default, use the Csound options set in the <CsOptions> tag of
the .csd file. However, you can override these options manually. Use the Options
pop-up menu, Csound... item, to bring up the Csound performance settings
dialog (Figure 2.13).

14

xanadu.wav
C: Csound examples
xanadu-high-resolution.csd

2.1. On Windows

e 'fnam
riting
2 I

p r en miditr ne
oundfile until perf E Time
utput dewi

in thi

ault Tanguage.

Flthk.d11’ it

Figure 2.12.: Command-Line Rendering

15

2. Getting Started

[Csound 5

_I d:/utah/home/mkg/y Orehestra/C 50
J Score file
_I dacs --midi-key-cpg QU file

=10l x|

Edit
Edit
Edit

« wanadu-high-resolution.csd - Scil

File Edt Search Wiew Tooks Options Language Buffers Help

=10 x| Csound console messages

=lolx|

DFEHR & BR X~ |qQat

1 <Csoundgynthesizer>
z <CsOptions>

-0 xanadu.wav

Options |

28200
1

H

Gote | [0 Seconds

Utilities ﬂ :
L} _>| » | W Messages N
Help T N

sInstrument L @ plucked strings chorused left/ri
pitch-shi fred
functions, and delayed.

and delayed taps thru exponent

whr and
rial

é M Csound performance settings

i ‘Genara\| Sound \/O‘ Real time aumn‘

[/utan/nome/mkoiarojectsicsaundd Orchestrai©sD .. |
’— Score file
l— Line input
l— Plugin liararies _I

wiDI| Ervronment|

231

[None =] Display mode
m Heartbeat
,W Sample rate
,D— Score offset

259

String length I Opti

I™ Skip Csoptions [-time only.

™ verhose messages

85200 Control rate [
-1 Initial tempo

linsegr 0.0, 0.006, 1.0, p3 - 0O
expon -1, p3, 1.0
] T
prroll
PR
oo
o
om0
Message level delayw 2y
ol

instr 1
16 dshite _ongesseT hife it 8/1200
17 ipen cpepeh ips) parameter 5 to cps
— - octpehps) v parameter § o oot
=l0IXl poseir 17120, ipeh/n, 1 svibrato
pluck 2000, cpsact tioc Hewik), 1000, 1, 1

3, 1000, 1, L
1, 1000, 1, L
066, 1.0, 0.06, 0.0

sexponential from 0.1 to L
exp al from 1.0 to 0
set delay line of 2.0 sec
stap delay line with Rfl fu
stap delay line with K2 fu

idelay 1.1 see.
iput ag signal ince delay L

z : plucked strings chernsed Laft/ri
~shifted with fized delayed taps

b and

Aistart| | @ RS D
HipOe

—_

[\

(corresponds

instr 2
- _onsE6EET
IMIZE EXOressions pspch ipS)
- octpeh (p5)
™ Defer GEND1 poscil 17120, ipch/s0, 1
pluck
Ppluck
Ppluck
OK Cancel linsegr
- adanping * ag
=ITeTE adanping * agleft

1

e L, column 1 (IS} (LF) - 0 chars selected

£

Ea csou... ~ T tutorial.pof | @ xanadu-...

Figure 2.13.: General Options

to the -o option).

AHCANPIRBETTOX NHOBEO TN ST | @ comen.. | Gmbox- .. | [T2Tetni | Po it | Mt SES 2@ Bl oz
W1 wame@llFE

Thursday

. Select the General tab, and type 88200 into both the Sample rate and the
Control rate fields (corresponds to the -r and -k options),

. Select the Sound I/0 tab, and type xanadu.wav into the Output file field

3. Use the File type combo box, and select the wav item to produce a Windows
WAV format soundfile (corresponds to the -W option).

e~

. Use the Sample format combo box and select the float item, to write

floating-point samples (the highest resolution commonly used) in the output
soundfile (corresponds to the -f option).

(@)

. Enable the Rewrite header checkbox, to ensure that after every kperiod,

Csound will rewrite the output soundfile header, so that the soundfile can be
played even if Csound stops in mid-rendering (corresponds to the -R option).

D

. Enable the Dither checkbox, to cause the final audio output to be dithered just

before it is written to the output, which masks noise introduced by arithmetic
errors and other processing artifacts (corresponds to the -Z option).

7. If you want ID3 tags encoded into the soundfile header for copyright or master-
ing purposes, enter your data in the Soundfile tags section (the fields corre-
spond to the -+id_artist, -+id_comment, -+id_comment, -+id_copyright,
-+id_date, -+id_software, and -+id_title options).

16

2.1. On Windows

M Csound 5 MISIE)| « xanadu.csd - SCTE P [a] 3 | | Csound console messages —(o| x|
Fle Edt Search View Took Options Language Buffers Help audio buffered in 1024 sanple-frame blocks
- — sriting S15c-byte blis Of £loats to xansdi.uew (VAV)
.| [g:utahnomermkgy Crehestra/CSD Edit D= R & & BX|o = |Qat SECTLO
Score file Edit z
2
ranaciu way Qutput file Eit : : ;
. = new alloc for instr 3:
N new allos for instr 3:
T i - new alloc for instr 3:
Options T | 8 nchnls - 2 new alloc for inste 3
B 5 0.000 .. 0.100 T 0.100 TT 0.100 M: -24.21 -24.23
Utlties 10 Imstrumens L plushed strangs chorwssd lsgt/rignt and new alloc for instr 1:
i pitch-shifted and delayed teps thru expomenmtial B 0.100 .. 0.200 T 0.200 TT 0.200 M: -34.90 -1%.28
K n » | | Messages :i : fun T
‘ 1
4 B 0.300 .. 0.400 T 0.400 TT 0.400 M: -9.31 -12.78
Gota | |0 Seconds Help v 15 - instr 1 new alloc for instr 1:
B 0.400 .. 0,500 T 0.500 TT 0.500 Mz -8.74 -12.17
T—— = T

||| frable 2:
frable 3:
und -RiZfo Kenadu.waw temp.ore temp.sco new alloc for instr 1:
new alloc for instr 3:
new alloc for instr 3:

28200
1

and delayed. 5 0.z00 T0.300 TT 0.300 Mz 1211 -16.06

16 dshifc = 00886557 sshife it 5/1200
rt parameter § to ops

17 apen = cpspehips}
7| T - octpchips) © parameter § to sct
19 kvib poscil 17120, ipeh/sn, 1 svibrato new alloc for instr 3¢
20 ag Pluck 2000, cpsoct tioctHkviby, 1000, 1, 1 new alloc for instr 3:
21 aglert Pluck 2000, epsoct (iocttishire), 1000, 1, 1 new alloc for instr 3:

1
7.500 TT 7.500 M: -8.09 -6.23

2z agright Bluck 2000, cpsoct(ioct-izhift), 1000, 1, L new alloc for instr 3:
2z afl expon. 1,98, 1.0 exponential from 0.1 to 1 new allos for instr 3
. . ety et o new alloc for instr 3t
"t i : 0 .. 7.600 T 7.600 TT 7.600 M: —13.55 -13.80
B ooor delayx z new alloc for instr 2:
26 avapl deltapi afl Cear dviey dime v e v |[BrERL AR 00 TT 770w 12,35 13.00
27 atape deltapi atz sbap deley line with kf2 fu |[new alloc for inste 2:
28 adl deltap 2.0 idelay 2 sec B 7.700 .. 7.800 T 7.800 TT 7.800 M: -11.72 -14.1d
23 aaz ae1t: 11 jdelay 1.1 sea. new alloc for instr 2:
ol i 5 7.800 .. 7.500 T 7.500 TT 7.900 M: -12.82 -12.42
> delane spue ag sigual dnge d2lar L lney alloc for inste 2:
a1 outs Lefebanenltadl, agriohfaens bads 00 . 000 T £.000 TT ©.000 H: -11.98 -11.26
g endin new alloc for inste 2:
S B s.000 .. 15.000 T LS.000 TT 15.000 M: -9.%5 -10.51
3% Instrument 2 : plucked strings chorused lefo/right and new alloc for instr
il pitchoshi fred with fired delayed tap B 15.000 .. 15.100 T 15 100 TT 15.100 Mz -15.89 -16.04
e new alloc for instr
B Ls.100 .. 15200 T 15 200 TT 15.200 M -15.17 -14.26
=7 new alloc for inst
e - instr z B 15.200 .. 15.300 T 15.300 TT 15.300 H: -13.48 -14.39
@3 dshifn - 00666667 jshife it 8/1200 new allos for instr 2:

E 15.300 .. 15,400 T 15,400 TT 15.400 M -11.86 -13.25
new alloc for instr 2:
B 15.400 .. 15.500 T 15.500 TT 15.500 M: -12.26 -12.69
new alloc for instr 2:
B hstno . e ten T hz.s0 T 2z m 10.92 9.0

40 ipeh = cpspchipS)
4l 1oet = octpohips)

4z kvik poscil 171z0, ipehsso, 1
43 ag pluck
44 aglefc Pluck
45 agright Pluck

46 adump delayr) jeer delay line of 0.2 sac B 22.700 .. 22.800 T 22.800 TT 22.800 M: -11.85 -12.20
47 adl deltop P Sdelay 100 meec B 22.800 .. 22,900 T 22,900 TT 22.900 M: -12.18 -12.06
. aert, oz el ron e B 22.900 .. 23.000 T 23.000 IT 23.000 M: -12.12 -13.05
ol § caetar E 23.000 .. 30.000 T 30.000 TT 30.000 M: -6.36 -10.45
a2 delayw ag fPuC ag sign dnto del line B 30.000 .. 30.100 T 30.100 TT 30.100 M: -14.23 -14.29
& outs aglefetadl, agrighvtad? B 300100 .. 30200 T 30200 TT 30.200 M: -14.51 -14.59
51 endin B 30.200 .. 30.300 T 30.300 TT 30.300 M: -12.43 -12.00
B +|||E sv-zo0 o 30,400 T 30i400 TT Goi4o m: -12.52 -15.27
1 R B 30,400 . 30.500 T 30.500 TT 30.500 m: -12.75 -11.92
line 1, column 1 {INS) (CRAHLF) - 0 chars selected K| D[

JB w2, .| (£ Dutabthome...| & wincvs - i\t | [T] TesricCenter -, | |13 o w9 oY, o0 0 1y 145 pm
T2 souncsqui_-| @ meeila Frefox|[@ wanadu.csd - . OEOMLT 1 seturdey

m(—ﬂﬁm)%ﬂxﬁﬁ.%ﬂﬁﬁﬁ:

#start’ 2 =
=

Figure 2.14.: GUI Rendering

Now close the Csound performance settings dialog, and click on the Play /-
Pause button (Figure 2.14).

As the piece renders, the Current score time field in csound5gui displays the
elapsed score time — not the elapsed real time. For real-time performance, score
time is the same as real time; for off-line rendering, score time can run either faster
or slower than real time. At the same time, Csound prints messages to the Csound
console messages window.

You can stop rendering at any time by click on the Stop button. After stopping,
you can restart. You can even restart part-way into the score, by entering a value
in seconds into the Goto field and clicking on the Goto button.

When the piece has finished rendering, you can hear it by clicking on the Edit
button for the Output file field, which, if you have configured an audio editor for
csoundbgui, will open the editor with the output soundfile already loaded and ready
to play or edit (Figure 2.15).

2.1.5. Real-Time MIDI Performance

Real-time MIDI performance means playing Csound as a live MIDI synthesizer. Your
computer must have an audio interface connected to headphones or speakers, your
computer must also have a MIDI interface, and you must plug the MIDI out port
of your MIDI keyboard or other controller into the MIDI In port of your MIDI
interface.

You start Csound with an orchestra that is designed for real-time MIDI perfor-
mance, you play your controller, Csound renders what you play as you play it, and

17

2. Getting Started

WETES][- uasdu-ha resoluin.csd-scite SI=TE| loix|
Fle Edt Search View Took Options Language Buffers Help new alloc for instr 2: Y

. o B .400 .. 15.500 T 15.500 TT 15.500 M: -12.24 -11.64

_| d:/utah/home/mikg/y Orchestra/CSD Edit D ER &4 BX|o = |Qab new alloe for instr 2:

B 15.500 .. 22.500 T 22.500 TT ZZ.500 M: -9.78 -8.84

. i <CeowndSynthesizar> Al 2z.500 .. 2z.600 T 22.600 TT 2z.600 M: -12.86 -12.32

= Score file Edit z <Cstprime B 720600 || 22.700 T 72,700 TT ZZ.700 MG 1123 -10.30

csound o xanadu. wav E 22.700 .. 22.800 T 22.800 TT 22.800 M: 22 -0

E 22.800 .. 22.900 T 22.900 TT 2Z.900 M:
E 22.500 .. 23.000 T 23.000 TT 23.000 M:
E 23.000 .. 30.000 T 30.000 TT 30.000 M:

anadu csd Output file Edit
28200
1

sups - B 30.100 .. 30.200 T 30.200 TT 30.200 H:

Options | chnls - 2 E Gn.200 .. 30,300 T 30.300 TT 30.500 M

e E 30.300 .. 30.400 T 30.400 TT 30.400 M:

Utiities 10 Inctrument L @ plucked stvings cherusad lefo/risht and E 30400 [0 30.500 T 300500 TT 300500 I:

i pitch-shifted and delayed taps thru exponential B 30.500 .. 37.500 T 37.500 TT 37.500 M:

o5 - PR E 37.500 .. 37.600 T 37.600 TT 37.600 I:

M » W] Messages . wmerions, and delayed. E 37.600 .. 37.700 T 37.700 TT 37.700 H:
14 E 37.800 .. 37.900 T 37.300 TT 37.900 M:

Goto | [0 Seconds Help v 15 - instr 1 B 37.900 .. 38.000 T 38.000 TT 38.000 M:

16 ishifc = _D05E6EET

17 ipen - ©cpspoh (p5)
|2 iom = octpehips]
s vein noseil 1170 inch/an 1

Fio Edi View Projct Generate Effect Anahze Help
=] ;;jw I
Lk '«/ % ./ "/ _‘/ »1/ v 5 024842 £ 0 S 45 o0 4260 | o T
To = B) T = = HW‘EE‘@‘MM—M ﬂﬂ }B‘ﬁ‘a‘&‘

v 15 30 a5 100

R[xanacu ¥ [1.0
Steren, BE200Hz

I

32-bi float 2

Mute | Solo

gt
BRI TRS 6S
-1.0
1.0 -
0s
n iy
‘ [|5 rerurned no freeapace
ProjectRate (Hz): Selection Start & End:. { Length: ‘Audio Pasition: overall amps: -4.96 -6.23

rforman

- + w |t end of performance: real: 101.01ls, CPU: 101.07%
98200 0 [0 m[oo Joue s 0 o0 mfoo [ooo s 0 0[00 m[o+ [383 5 [nnmrnss - miliseconds =t nd of performance: real: 101011, CFU: 10107
[Play: (Shift For loop-play)
=
S — o

rary file C:\DOCUME~1\Michael}LOCALS-1\Teup)\cslo. s
Arary file C:\DOCUME~l\Michael}LOCALS-l}Teup)cs3.sc
Renoving temporary file C:\DOCUME~1\Michael}LOCALS-1\Temp)cs2.or

[Ine 11, column 55 (INS) (LF) - O chars selected |14l I
== | B CAOPIREFDNY IWOBOVRAG D W |Bon. |Gk |[Ter. Prw.|D2oe. | wMGanoBY 20 Bl sovm
B % o, | @ xanan. | Y xana... |[E3 an.. WP e D GEIF Thusdsy

Figure 2.15.: Playing Output Soundfile

you hear the audio output from your speakers or headphones.

If you have a reasonably new personal computer with a reasonably up to date
version of Windows, you will hear what you are playing within a few milliseconds
of when you play it. Since your reaction time is probably around 20 milliseconds or
a little less, and even the best keyboard players are only accurate within about 5
milliseconds, that is fast enough to seem almost instantaneous.

The following explains how to do real-time MIDI performance on my new notebook
computer, running Windows XP Media Center Edition, using an M-Audio Ozone
as audio interface, MIDI interface, and MIDI keyboard. Assuming that you have
already installed your audio and MIDI interfaces and controllers, you would take
almost identical steps with your own setup.

1. Run csoundbgui.

2. Click on the button with three dots by the Orchestra/CSD field to open the
Select orchestra or CSD file dialog. Navigate to the C:\Csound\examples
directory, and open the CsoundVST-nomixer-flags.csd file (currently the
Mixer opcodes do not seem to work with MIDI), which is designed for both off-
line rendering and real-time MIDI performance. csound5gui will, by default,
use the Csound options set in the <CsOptions> tag of this file. However, you
must override some of these options manually.

3. The current version of csound5gui is not written to set all possible Csound
options from the settings dialog. Therefore, you must edit the orchestra file
to set some options. Click on the Edit button next to the Orchestra/CSD

18

C: Csound examples
CsoundVST-nomixer-flags.csd

10.

11.

12.

13.

14.

15.

16.

2.1. On Windows

field. In the orchestra file, locate the <CsOptions> tag. Add the following
options to this tag: --midi-key-oct=4 --midi-velocity=5. These options
cause MIDI note on message key numbers to be sent to pfield 4 in Csound
instruments as linear octaves, and MIDI velocity numbers to be sent to pfield

5.

Add to your Csound orchestra header (i.e., before any instrument definition
blocks) the following statement to reassign MIDI channel 1 to Csound instru-
ment 5: massign 1, 5. Save the orchestra file.

All the other options can now be set by dialog. Use the Options pop-up
menu, Csound... item, to bring up the Csound performance settings
dialog. Select the General tab, and type 44100 into the Sample rate field,
and 441 into the Control rate fields (corresponds to the -r and -k options).
This will cause Csound to compute 100 audio sample frames for each control
sample, or kperiod.

Select the Sound I/O tab, and type dac into the Output file field (corre-
sponds to the -0 dac option; dac stands for digital to audio converter, i.e. the
audio output interface, and plain dac or dacO is the default audio port).

Use the File type combo box, and select the wav item to produce Windows
WAV format audio (corresponds to the -W option).

Use the Sample format combo box and select the short item, to write 16-bit
integer samples (CD quality) for audio output (corresponds to the -s option).

Disable the Rewrite header checkbox — it’s irrelevant for real-time audio.
Disable the Dither checkbox — it’s not needed for real-time audio.

Select the Real time audio tab, and select PortAudio in the Real time au-
dio module combo box (corresponds to the -+rtaudio=PortAudio option).

Select 128 in the Buffer size in sample frames combo box (corresponds to
the -b128 option).

Select 4 in the Number of buffers combo box (corresponds to the -B512
option). At 44100 frames per second, that givers an audio output latency of
11.6 milliseconds.

Enable the Perform in a separate thread checkbox.

Select the MIIDI tab, and select PortMidi in the Real time MIDI module
combo box (corresponds to the -+rtmidi=PortMidi option).

Type 0 in the Input device field (corresponds to the -MO option; 0 is the
default MIDI port).

19

2. Getting Started

Now close the Csound performance settings dialog, and click on the Play /-
Pause button. You should hear nothing, because the <CsScore> tag in the .csd
file contains no notes — you will be playing the notes in. If you do hear anything,
you have a problem!

Now, play a few notes on your keyboard or other MIDI controller. You should hear
something now. More specifically, you should hear a Hammond B3 organ sound. If
you don’t hear anything, or if you do hear something but it sounds wrong, you have
a problem. Click on the Stop button.

The most likely problem is that the default audio device or MIDI device is not
suitable. As Csound runs, it prints a list of available devices, so look at the Csound
console messages window to see them (Figure 2.16).

M Csound console messages 10O x|
SoundFont: 4 Bank: 1 Preset: 74 Corinthian Flute § ﬂ

SoundFont: 4 Bank: 1 Preset: 75 Glockenspiel
The awailable MIDI in dewices are:

0: In Ozone (MMSystem)
PortMIDI: selected input dewice 0: 'In Ozone' (MMSysten)
orch now loaded
audio buffered in 125 sample-frame blocks
Portiudio V19-devel
Portiudio: awvailable output dewices:

: Microsoft Sound Mapper - Output

: M-iudio Ozone
: SigmaTel Audio
: Primary Sound Driver
: M-iudio Ozone
: SigmaTel Audio
: ASTI0 Directd Full Duplex Driwver

7 ASI0 Multimedia Driwer

g: M-iudio TSE A5I0 Interface
Portiudio: selected output device 'Microsoft Sound Mapper - OJutput!
weiting 10Z4-byte blks of floats to dac
SECTION 1:
new alloc for instr Ll:
new alloc for instr 190:
new alloc for instr 200:
new alloc for instr Z210:

LI [»

TN s L) RO

L

Figure 2.16.: Available Interfaces

If you know the correct audio and MIDI devices, go back to csound5gui and
change the device number in the OQutput file field. In this case, I know that the
Ozone’s ASIO interface, device number 8, has the best latency. So, I change the
output to dac8. If you don’t know the right device, change the number systematically
until you find the best one. If that still doesn’t work, try increasing the value of the
-b option for higher latency.

After making your corrections, click on the Play /Pause button and try playing a
few notes again. As the piece renders, the Current score time field in csound5gui
displays the elapsed real time, and Csound messages are printed to the Csound
console messages window. These will include rtevent notifications for real-time
score events, and midiKey and midiVelocity notifications showing how the MIDI
note on message fields are mapped to Csound pfields (Figure 2.17).

You can stop rendering at any time by clicking on the Stop button, and after
stopping you can restart.

To hear different Csound instruments, change the massign statement to other in-
strument numbers, or change the MIDI channel assignment of your MIDI controller,
and start Csound again.

20

2.2. On Linux

BISIES|| < csoundvst.csd - satE B8/ 7| | Csound console messages _ (ol x|
Fle Edt Search View Tools Options Language Buffers Help widiFey: 4 -
widivelocity: 5
.| [d:itahvhomesmkarf Orehestra/CSD Edit [DEER|[E| 2R X ~]Qat even! 71T -az2.01
4
Ts20 =1z Dutterip az, 100 Aidivelacitys H
Score file Edit 1s21 sl all * L5 4 al uwidiKey: a
1522 a2z alz * 1.5 + a2 uwidivelocity: 5 39,64
1523 : Bade in, fads ouc rteven T -
dacs Output Tile Edit . Linmeq 0. b5 s 20, pa, D3 - b, widikey: 4
. P uwidiVelocity: 5
1526 az az . kem’ rteven T “3n.10
a = a Eny T 39.22
Options T 1527 ; Apply compression. TT -38.93
1528 a1 dam. al, 5000, 0.5, 1, 0.7, 0.1 T -36.68
Utiities 1529 a2 dan az, 5000, 0.5, 1, 0.2, 0.1 s
1530 5 Remove DC bias.
5 TT -43.94
K I » s 1531 aiblocked dcblock al T
P p— acblook az Aidivelacitys H
1533 ; Output sudio. widiKey: 4
Goto | [0 Seconds Help 5 1534 outs alblocked, azblocked widiVelocity: H
; Reset the busses for the next kperiod. widiKey: 4
Hixerclear widiVelociry: 5
LTEVent: TT -40.27
s rteven TT -41.81
</CsTnstrunent s> Lhewen s an6s
<CsScorer widike a
uwidiVelocity: 5
EFFECTS MATRIX rtevent 0 TT -49.12
uidiKey: 4
N widiVelocity: 5
; Chorus to Rewerd o = -
3100200210 0.1 3
7 Chorus to Output 5
i 100 200 220 0.2 TT -39.91
: Raverb to Gucpur sikey :
i1l 00 210 ZZ0 1.0 midiVelocity:
LTEVent: TT -33.87
3= TT -3%.11
5 SOUMDFONTS OUTFUT Treven " T3aler
widiKe: 4
; Insno Starc Dur Key Buplitude widiVelocity: 5
i 190 1] 10000 1] 20 rtevent 9 TT -42.68
uidiKey: 4
N widiVelocity: 5
; MASTER EFFECT CONTROLS widivels H
widiVelocity: 5
7 Chorus. widiKey: 4
5 Insno Btart Dur Delay Divisor of Delay widivelocity: 5
i zoo o 10000 10 30 rteven! TTLI -32.51
rtevent TTLI -35.15
;R rteven! TTLI -33.05
7 hewerd idiKey: 4
© Insno Start Dur Level Fasdback Cutott Eiditerscity:
iz o 10000 o.8L 0.2 15000 widiKey:
widiVelocity:
; Master cusput. rteven
© Insmo Scart Dur Fadein Fadeout e
izza o 1000 0.1 0.1 uidivelo
widiKe:
«/CsScorex> widiVelocity:
</CsoundSynthesizers rreven
<[rzeven
. rreven Tioa. 567
|14l I»

Bset| G ORSED E - =i OvOs
Ea0- e

m

8 MiGw2ie TesnicCenter -[... | <] tutorial.pof |[waame9 2@ By sam
T2 sandsau|[@ CooundvsTesd... Y csaundsou e | | | D@ 4B ESMQEIE Frdar

Figure 2.17.: MIDI Performance

2.2. On Linux

To be completed.

2.3. On Apple

To be completed.

21

2. Getting Started

22

3. Writing Orchestras and Scores

The chapter starts with two short sections on how software synthesizers in general,
and Csound in particular, work. You can skip these sections if you are not interested.
There follows a section on writing the simplest possible instrument, and making it
sound better and better through a sequence of increasingly refined versions.

3.1. Signal Flow Graphs

Almost all software synthesizers run as a set of unit generators (opcodes, in Csound
terminology) that are connected so that the outputs of some units feed into the
inputs of other units. It is very similar to a modular electronic synthesizer, such as
a Moog synthesizer, in which small electronic units are patched together with cords.
In software engineering, this kind of wiring diagram is called a synchronous signal
flow graph. Oscillators, filters, modulators, envelope generators, and even arithmetic
operators and functions are all unit generators.

In Csound, each instr or instrument block in the orchestra code is one signal
flow graph. The inputs to an instrument consist of any number of pfields (standing
for parameter fields), which come from i statements in the score, or from real-time
events:

pl Always represents instrument number, which can be an integer or a fraction.
Score events with fractional numbers are considered to be “tied” in the sense
that after an instrument instance is initialized, a new score event with the
same fractional number is sent to the already running instrument instance,
which skips its initialization run. This produces a very good approximation of
a slur tying two notes in music notation.

p2 Always represents the time that the score event begins, although this time can
be in seconds or, if the score contains a t (tempo) statement, in musical beats.

p3 Always represents the duration of the score event, in seconds or in beats; if -1,
the event will continue indefinitely. Note that instruments can modify the
value of their own p3 fields.

p4...pN Higher pfields have user-defined meanings. However, throughout this tu-
torial, p4 represents pitch as MIDI key number,! and p5 represents loudness
as MIDI velocity number.?

!MIDI key number represents pitch in semitones, ranging from 0 to 127, with middle C = 60. In
Csound, fractional MIDI key numbers can be used to represent non-equally-tempered pitches.

2MIDI velocity number represents loudness in a roughly logarithmic scale, ranging from 0 to 127,
with mezzo-forte being perhaps 100.

23

3. Writing Orchestras and Scores

Each Csound opcode is one unit generator, and is written as one line of text.
Assignment statements, logical operators, and arithmetic operators are also imple-
mented, when the orchestra file is compiled, as unit generators.

Opcodes accept zero more input arguments, and output zero or more return values.
The output of an instrument block is sent to output using various opcodes, usually
outs or outc. Since these opcodes have no outputs inside the instrument, they are
root nodes of the graph (of course, a graph may have more than one root node).

In Csound, variables and opcodes are active at different rates:

i-rate Initialization rate — scalar variables whose names begin with the letter i,
and whose values are fixed when an instrument instance is initialized, and
never change after that.

k-rate Control rate — scalar variables whose names begin with the letter k, and
whose values can change at the control rate.

a-rate Audio rate — vector variables whose names begin with the letter a, and whose
values can change at the sample frame rate. Obviously, all input and output
audio signals must be represented in a-rate variables.

3.2. How Csound Works
3.2.1. Csound Files

Listing 3.1 shows a very simple .csd file, which creates the simplest possible instru-
ment and plays one note on it. The code is however extensively commented.

Listing 3.1: Simple Orchestra

<CsoundSynthesizer >
<CsOptions>

-R -W -f -o tutorial.wav
</CsOptions >
<CsInstruments >

; Sample frames per second.

sr = 88200
; Number of sample frames per control period.
ksmps = 1
; Number of audio output channels.
nchnls = 2
; Amplitude of 0 decibels full scale (maximum amplitude).
0dbfs = 32767
; Instrument number one -- very simple.
instr 1
; Pfield 4 contains pitch as MIDI key number.
ikey = p4
; Pfield 5 contains loudness as MIDI velocity number.
ivelocity = p5
; Translate MIDI key to linear octave.
ioctave = ikey / 12 + 3
; Translate linear octave to cycles per second.
ifrequency = cpsoct (ioctave)
; Translate MIDI velocity to decibels full scale.
idb = ivelocity / 127 * 84
; Translate decibels to output amplitude.
iamplitude = ampdb (idb)

; Generate a band-limited sawtooth wave.

24

3.2. How Csound Works

aout vco2 iamplitude, ifrequency
; Send the output to both channels

outs aout, aout

endin

</CsInstruments >
<CsScore>

i 115 60 100
</CsScore>
</CsoundSynthesizer >

A .csd file is a kind of XML file, containing sections marked off by tags. The
<CsOptions> tag contains command-line options, the <CsInstruments> tag contains
the Csound orchestra, which in turns contains a header and one or more instrument
definition blocks, and the <CsScore> tag contains zero or more f statements (for
generating function tables) and i statements (for sending notes to instruments).
Any line beginning with a semicolon is a comment and is not interpreted.

In order to make instrument definitions easier to read, many people follow the
convention of writing each opcode line in 3 widely and evenly spaced columns, with
the output variables flush left, the opcode itself in the middle (remember that = is
an opcode), and the input parameters on the right. I also think it is easier to read
if comments go above lines, not at the right of lines.

3.2.2. Performance Loop

When Csound reads the .csd file, this is what happens:

1. Csound loads any plugins in the OPCODEDIR (for 32 bit sample Csound) or
OPCODEDIR64 (for 64 bit sample Csound) directory.

2. Csound reads its input files. If the input is a .csd file, Csound creates a
temporary orchestra (.orc) file from the <CsInstruments> tag of the .csd
file, and a temporary score (.sco) file from the <CsScore> tag of the .csd file.

3. Csound parses its command-line options, which can come from various sources
(in order of increasing precedence):
a) Csound’s internal defaults.

b) A .csoundrc file in the user’s home directory, or the directory specified
by the CSOUNDRC environment variable.

¢) A .csoundrc file in the current directory.
d) The <CsOptions> tag in the .csd file.
e) The command line.

4. Csound loads and enables any plugin modules required for audio or MIDI input
or output.

5. Csound reads the orchestra file, and sets the sample frame rate, kperiod size,
and number of audio output channels from the sr, ksmps, and nchnls state-
ments, respectively, in the orchestra header.

25

3. Writing Orchestras and Scores

6. Csound parses the instr blocks in the orchestra file, and compiles each instr
block into an instrument template, which contains storage for input fields, and
two linked lists of opcode templates. One list is for initializing an instrument
instance, and the other list is for operating the instance.

7. Csound reads the score file, translates tempo statements, score sections, macros,
continuation and increment operators, and so on, and sorts the results to pro-
duce a sorted, time-warped, compiled score file.

8. Csound actually performs the compiled score with the compiled instrument
templates:

a) Csound runs down the initialization list for any global instruments or op-
codes, and calls each opcode’s initialization function (e.g., to load Sound-
Fonts).

b) Csound checks to see if any real-time events or score events are pending,
or if performance has finished. If f statements are pending, Csound goes
to step 8c. If i statements are pending, Csound goes to step 8d. If
performance is finished, Csound goes to step 8f.

¢) Csound allocates memory for any pending f statements, and initializes
the function table; this can involve computing a mathematical curve, or
loading a soundfile or a table of data from the disk.

d) Csound looks for an inactive instrument instance for each pending i state-
ment. If an inactive instance is found, Csound activates it. If there is
no inactive instance, Csound creates a new instance by copying the in-
strument template (and its associated lists of opcode templates). Csound
fills in the instance’s pfields from the i statement. Csound then runs
down the instance’s initialization list, and calls each opcode’s initializa-
tion function.

e) Csound performs one kperiod. Csound runs down the list of instrument
instances. For each active instance, Csound runs down the instances’s
operation list, and calls each opcode’s operation function. Inside the op-
eration function, if there are any a-rate variables, an inner loop must run
for ksmps sample frames to compute each element of the vector. If the cur-
rent time has passed the sum of p2 and p3, or if an instrument has turned
itself off, Csound deactivates the instance. When all the instances have
been run, Csound sends the audio output buffer to the output soundfile
or device. Csound then goes back to step 8b.

f) Csound calls a deinitialization function in each plugin, closes any device
plugins, deallocates instrument instances, and resets itself for another
performance (or exits).

3.3. Writing Your First Piece

Use a text editor to create a .csd file named tutorial2.csd, which should contain
only the empty tags:

26

3.3. Writing Your First Piece

Listing 3.2: Empty .csd File

<CsoundSynthesizer>
<CsOptions>
</CsOptions >
<CsInstruments>
</CsInstruments >
<CsScore>

</CsScore>
</CsoundSynthesizer>

Now fill in the tags one at a time. If you are going to run the piece using
csoundbgui, you do not need to fill in the <CsOptions> tag. It may be a good
idea, however, to put in some reasonable default options:

<CsOptions>
-W -f -R -o tutorial2.wav
</CsOptions >

Create the orchestra header for a sample frame rate of 88200, a control sample
rate of 1, and stereo channels (i.e. for a high-resolution stereo soundfile):

<CsInstruments >
sr

ksmps

nchnls
</CsInstruments >

88200
1
2

Add a global ftgen opcode to generate a global function containing a high-
resolution sine wave. The number of the wavetable is stored in the global gisine
variable. The pfields mean:

1. Function number (0 means automatically generate the number).

2. Time at which the function table will be created (0 means the beginning of
performance).

3. Size of the table. The bigger the table, the less noise in the signal. 65536 is
2 to the 16th power, which produces a low-noise signal; increasing the size by
1 means that interpolating oscillators that require a power of 2 size have one
element past the end of the table to use for interpolation (a guard point).

4. The GEN function used to generate the table; GEN 10 generates a series of
harmonic partials.

5. Further arguments depend on the GEN function. For GEN 10, the single pfield
1 means generate the first partial with amplitude 1, and no other partials —
i.e. a sine wave.

<CsInstruments >

sT = 88200

ksmps = 1

nchnls = 2

gisine ftgen 0, 0, 65537, 10, 1

</CsInstruments>

27

3. Writing Orchestras and Scores

3.3.1. Simple Sine Wave

Add an empty instrument definition for instrument number 1. Instrument definitions
begin with the keyword instr and the instrument number, and end with the keyword
endin.

<CsInstruments >

ST = 88200

ksmps = 1

nchnls = 2

gisine ftgen 0, 0, 65537, 10, 1
instr 1
endin

</CsInstruments>

In the instrument definition, create i-rate variables to receive MIDI key number
and velocity number from pfields 4 and 5:

instr 1
ikey = p4
ivelocity = PS5

endin

Translate the MIDI key number in semitones with middle C = 60 to linear octaves
with middle C = 8, and translate the MIDI velocity number to range from 0 to 84
(roughly the dynamic range in decibels of a compact disc):

instr 1

ikey = p4

ivelocity = PS5

ioctave = ikey / 12 + 3

idb = ivelocity / 127 #* 84
endin

Translate the octave and decibels to Csound’s native units, which are cycles per
second and amplitude:

instr 1
ikey = p4
ivelocity = p5
ioctave = ikey / 12 + 3
idb = ivelocity / 127 % 84
ifrequency = cpsoct (ioctave)
iamplitude = ampdb (idb)

endin

Add a signal generator, in this case a precision wavetable oscillator for producing
a sine wave from our global table:

instr 1
ikey = p4
ivelocity = p5
ioctave = ikey / 12 + 3
idb = ivelocity / 127 x 84
ifrequency = cpsoct(ioctave)
iamplitude = ampdb (idb)
asignal poscil iamplitude, ifrequency, gisine

endin

Send the signal you have generated to each channel of the stereo output:

instr 1
ikey = p4
ivelocity = p5
ioctave = ikey / 12 + 3
idb = ivelocity / 127 x 84

28

3.3. Writing Your First Piece

ifrequency = cpsoct(ioctave)

iamplitude = ampdb (idb)

asignal poscil iamplitude, ifrequency, gisine
outs asignal, asignal
endin

Your new instrument takes 5 pfields:

1. Instrument number.
2. Time in seconds.

3. Duration in seconds.
4. MIDI key number.

5. MIDI velocity.

Create an i statement to play a middle C note at mezzo-forte on this instrument
at time 1 second for 3 seconds:

<CsScore>
i1 1 3 60 100
</CsScore >

Your piece is now ready to perform (Listing 3.3).

Listing 3.3: Instrument Definition

<CsoundSynthesizer >
<CsOptions>
</CsOptions >
<CsInstruments>

sr = 88200

ksmps = 1

nchnls = 2

gisine ftgen 0, 0, 65537, 10, 1
instr 1

ikey = p4

ivelocity = p5

ioctave = ikey / 12 + 3

idb = ivelocity / 127 x 84

ifrequency = cpsoct(ioctave)

iamplitude = ampdb (idb)

asignal poscil iamplitude, ifrequency, gisine
outs asignal, asignal
endin

</CsInstruments>
<CsScore>

i1 1 3 60 100
</CsScore>
</CsoundSynthesizer>

Run csoundbgui. Click on the square button with three dots next to the Orches-
tra/CSD text field, and use the file dialog to open your tutorial2.csd file. Type
tutorial2.wav in the Output file field. Open the Options menu, Csound...
item, and set the options in the Csound performance settings dialog, for wav
File type, float Sample format, Enable dither, and Rewrite header.

Click on the Edit button next to the Orchestra/CSD field, which will re-open
the file for editing. Click on the Play/Pause button to render the piece. When the

29

tutorial2.csd

3. Writing Orchestras and Scores

M Csound 5 M [[B3N - tutorial2.csd - SciTE P[] 5| M Csound console messag =] 3
Fie Edt Search View Toos Optins Langusge Buffers Help WARNING: 'D: Yutah\opt U ns61\FIER. dI1" 15 not & Csound B
- - — PortHIDI real time MIDI plugin for Caound
.. | |dutanmomesmigh Orehestra/CSD Edit D EHR|&] & B X|w o |Qab Forthuiio resl-tine andic uedule [or Ceownd
indovs MIE real time sudio and MIDI module for Csownd by Istvan ¥,

0dEFS level = 32768.0

Csound version 5.03.0 beta (double samples) Jul 31 2008
lihsnarile-1.0.16

UnifiedcsD: d: /utah/home/uky/prelects/csoundd/tutorial /tutorialz.
STARTING FILE

Score file Edit z
= -
4
[tutorial2 wavy Qutput file Ecit
—I —I : Creating options
: Creating orchestra
[

= L Creating soore
Options nehnls z orchnena: ©\DOCUME-1%HMichaeli LOCALS~14Tenpy ca30. oxc
s scorename: C:\DOCUME-L3\Michael}LOCALZ~1\Tenpics3l. s
Utities i st 1 Trandio: Poridudio memile nabled .. using tellback interface
- Ttmidi: PortHIDI module enahled

L] » L] Messages :i °

T
L
I

orch compiler:
14 lines rea

ikey /1 43
11 fvelosey /127 7 o4 Elapsed time at end of orchestra compile: real: 0.358s, CPU: 0.359
Goto | [0 Seconds Help 15 ©psoct (inctave! 3 sorting score ...
16 T ... done
Templicuds, ifrequency Elspsed time at end of score sort: real: 0.365s, CPU: 0.358z

Csound version 5.03.0 beta (double samples] Jul 31 2008
asimal, asimal displays suppressed
i % endin DABFS level = 32759 0
Py % orch now load
ne buftoras in 128 sample-frame blocks
uriting [024-byte blks of tloats to tutorielZ.usv (UAV)
SECTID

1,080 T 1.000 TT 1000 : 0 0
new alloc for inst
L0 Ceoun T 6.000 TT 6.oo0 m: 22.93 -22.79
=10l x| Score finiched in csowndPerfornKsmpsi).
inactive allocs returned to freespace
Fle Edt Visw Praject Generate Effect Analyze Help inactive allo ey oane: 22,79 -22.79
= H T LT I 0 errors in performance
: W) o @) n wi) |EF [R | Elopsed time ot end of performence: real: 0.608s, CPU: 0.6033
E B) o E 4135 1024-byte soundblks of Eloats written to butorialZ.waw (UAV)
J R ek ’ 7 / vy 7 S w45 24 1280 Pyl s w24 260 Renoving teuporary file C:\DOCUME~1\Michaell\LOCALS~1\Teup)csdz. st
= = = = 5 z Removing temporary file C:\DOCUME-L\Michael)LOCALS-I\Temphcs3l.seo
HE Lldg) A | = H‘.;{"‘E@l@‘-ﬂlll-hu}-{m‘ | o ﬁlﬁ‘}il&‘ Removing temporary file €:\DOCUME~1\Michael)LOCALS.I)Teupcs30. orc
10 g 10 0 30 [0 0
Xuutorial2__ > [1.0 2]
Stereq, 58200Hz
32-bit flost CS
Mute | Solo
- L | 00
Foonigin it -
Log R|®s
10
) -|
< | Bl
Project Rate (H): Selection Start @ End:_C Length ‘Audia Position
0 h[00 m[o0 fooo s hf00 m[o0 Jooo s 0 hfo0 mfoo [000's [hhommiss + milliseconds
4 o
[line 17, column 58 (INS) (LF) - 0 chars selected 4 | 1
Bt @ ORED IAONGCANDIRBED DY IWOEOED G D ¥ |H2wc. o| ¥ conde. | [[ienece. | Futoiaod | [2e s A SZ9 8 1 £WD s0rm
HPEZRLDEY S T2 csoun., | @ tuoriaiz,... [tutorialz L2 Ol EIE sstudsy

Figure 3.1.: tutorial2.csd

rendering has completed, click on the Output file field Edit button to hear the
piece (Figure 3.1).

Well, it’s not a very interesting piece! And typing in note statements becomes
extremely tedious, even for a simple piece like Three Blind Mice. Of course, people
who actually use Csound to make music either write programs to generate scores, or
they use a MIDI sequencer or notation software, or they play live. Here, however,
we will focus only on improving the sound of the instrument.

3.3.2. Simple Sine Wave, De-Clicked

The most obvious problem right now is that the sound begins and ends with an
obnoxious click. This is caused by the sharp discontinuity in the signal when the
note abruptly turns on and abruptly turns off. This can be fixed by adding a
damping envelope to tail off the clicks. In fact, every Csound instrument, with rare
exceptions, should have such a damping envelope. Make a copy of your instrument,
and number it 2, and add a linsegr opcode to tail off the clicks. It is a good idea
to add the attack and release times to p3, just in case you have a very short note.

instr 2
ikey = p4
ivelocity = p5
ioctave = ikey / 12 + 3
idb = ivelocity / 127 % 84
ifrequency = cpsoct (ioctave)
iamplitude = ampdb (idb)
asignal poscil iamplitude, ifrequency, gisine
iattack = 0.0015
irelease = 0.002
isustain = p3

30

3.3. Writing Your First Piece

p3 = iattack + isustain + irelease
adamping linsegr 0.0, iattack, 1.0, isustain, 1.0, irelease, 0.0
asignal = asignal * adamping

outs asignal, asignal

endin

Also add a note to test the new instrument. The ~+4 in pfield 2 means to add
4 to pfield 2 of the previous i statement. We do this to create a second of silence
between each test note. For all subsequent modifications, in the same way, we will
make a copy of the previous instrument and add a new test note to play it.

<CsScore>
i11 360 100
i 2 "+4 3 60 100
</CsScore>
Again, render and listen. The note now starts and ends abruptly but without

clicks, which is what we want. Of course, the sound is still boring.

3.3.3. Simple Sine Wave, De-Clicked, ADSR Envelope

Let’s add a real envelope to give some shape to the sound. Use the mxadsr opcode
to add an attack, decay, sustain, release (ADSR) envelope with exponentially rising
and falling segments (this is musically one of the commonest types of envelope).

instr 3
ikey = p4
ivelocity = PS5
ioctave = ikey / 12 + 3
idb = ivelocity / 127 * 84
ifrequency = cpsoct(ioctave)
iamplitude = ampdb (idb)
ienvattack = 0.004
ienvdecay = 0.5
ienvlevel = 0.25
ienvrelease = 0.05
aenvelope mxadsr ienvattack, ienvdecay, ienvlevel, ienvrelease
asignal poscil iamplitude, ifrequency, gisine
asignal = asignal * aenvelope
iattack = 0.0015
irelease = 0.002
isustain = p3
p3 = iattack + isustain + irelease
adamping linsegr 0.0, iattack, 1.0, isustain, 1.0, irelease, 0.0
asignal = asignal * adamping
outs asignal, asignal
endin

Better, but a sine wave is too plain.

3.3.4. Frequency Modulation, De-Clicked, ADSR Envelope

Add some basic frequency modulation to thicken up the sound. Use another poscil
opcode to modulate the frequency of the signal generating oscillator. This has the
effect of generating additional harmonics in the signal, whose content is controlled
by both the amplitude and the frequency of the modulation.

instr 4
ikey = p4
ivelocity = p5
ioctave = ikey / 12 + 3
idb = ivelocity / 127 x 84

31

3. Writing Orchestras and Scores

ifrequency
iamplitude
ienvattack
ienvdecay
ienvlevel
ienvrelease
aenvelope
amodulator
asignal
asignal
iattack
irelease
isustain
p3
adamping
asignal

linsegr

outs
endin

cpsoct(ioctave)

ampdb (idb)

0.004

0.5

0.25

0.05

ienvattack, ienvdecay, ienvlevel, ienvrelease
800.0, ifrequency * 7.00, gisine

iamplitude, ifrequency + amodulator, gisine
asignal * aenvelope

0.0015

0.002

p3

iattack + isustain + irelease

0.0, iattack, 1.0, isustain, 1.0, irelease, 0.0
asignal * adamping

asignal, asignal

The sound is thicker, but it’s not changing much as it sounds. Real musical sounds
tend to vary subtly all the time.

3.3.5. Frequency Modulation, De-Clicked, ADSR Envelope,
Time-Varying Modulation

Take a step in this direction by using the ADSR envelope to modulate not only the
signal amplitude, but also the amount of frequency modulation. The only difference
is to multiply the amodulator variable by the aenvelope variable.

ikey
ivelocity
ioctave
idb
ifrequency
iamplitude
ienvattack
ienvdecay
ienvlevel
ienvrelease
aenvelope
amodulator
asignal
gisine
asignal
iattack
irelease
isustain
p3
adamping
asignal

The sound is

32

instr

mxadsr
poscil
poscil

5

p4

p5

ikey / 12 + 3

ivelocity / 127 x 84

cpsoct(ioctave)

ampdb (idb)

0.004

0.5

0.25

0.05

ienvattack, ienvdecay, ienvlevel, ienvrelease
800.0, ifrequency * 7.00, gisine

iamplitude, ifrequency + amodulator * aenvelope,

asignal * aenvelope

0.0015

0.002

p3

iattack + isustain + irelease

0.0, iattack, 1.0, isustain, 1.0, irelease, 0.0
asignal * adamping

asignal, asignal

now almost usable. In fact, in some contexts, it probably s usable.
In general, the more notes are playing, the simpler the actual sounds should be, and
the fewer notes are playing, the more complex the individual notes should be. This
sound would probably be usable in a busy texture. But suppose we are hearing only
a few notes at a time?

3.3. Writing Your First Piece

3.3.6. Frequency Modulation, De-Clicked, ADSR Envelope,
Time-Varying Modulation, Stereo Phasing

Add some delay lines with modulation of the delay times in opposing phase. This
will create a moving texture that will shift from one side of the sound stage to the
other. Apply the de-clicking envelope to the signal written to the delay line as well.

ikey
ivelocity
ioctave
idb
ifrequency
iamplitude
ienvattack
ienvdecay
ienvlevel
ienvrelease
aenvelope
amodulator
asignal
gisine
asignal
iattack
irelease
isustain
p3
adamping
krtapmod
kltapmod
adump
adl
ad2

aleft
aright

.
=]
12}
ot
H

mxadsr
poscil
poscil

linsegr
poscil
poscil
delayr
deltapi
deltapi
delayw

6

p4

p5

ikey / 12 + 3

ivelocity / 127 * 84

cpsoct(ioctave)

ampdb (idb)

0.004

0.5

0.25

0.05

ienvattack, ienvdecay, ienvlevel, ienvrelease
800.0, ifrequency * 7.00, gisine

iamplitude, ifrequency + amodulator * aenvelope,

asignal * aenvelope

0.0015

0.002

p3

iattack + isustain + irelease

0.0, iattack, 1.0, isustain, 1.0, irelease, 0.0
0.002, 1.1, gisine, 0

0.003, 1, gisine, 0.5

1.0

0.025 + kltapmod

0.026 + krtapmod

asignal * adamping

asignal + adl

asignal + ad2

aleft * adamping, aright * adamping

3.3.7. MIDI Performance

You can easily modify your patch in order to play it live with a MIDI controller

(Figure 3.2).

1. Add anmassign 1, 6 statement in the orchestra header, to send MIDI channel

1 to Csound instrument 6.

2. Add --midi-key=4 --midi-velocity=5 to the <CsOptions> tag, to send
MIDI key and velocity to pfields 4 and 5, respectively.

3. Add a pset statement to instrument 6 to set default values for all 5 of your
pfields, so that instrument instances triggered by live MIDI events will receive
values (otherwise, warning messages about p4 and p5 not being legal for MIDI
will print). Such default values can be useful if you use score pfields to set
sound-generating parameters in your instruments. In this case, they can all be

7eros.

33

3. Writing Orchestras and Scores

4. You may wish to delete all i statements from the <CsScore> tag. If you do so,
you must add an £ 0 3600 statement, to tell Csound to render without score

events for 3600 seconds (of course 3600 can be any value).

<CsoundSynthesizer>
<CsOptions>
</CsOptions>
<CsInstruments>

sr =
ksmps =
nchnls =
massign
gisine ftgen
instr
pset
ikey =
ivelocity =
ioctave =
idb =
ifrequency =
iamplitude =
ienvattack =
ienvdecay =
ienvlevel =
ienvrelease =
aenvelope mxadsr
amodulator poscil
asignal poscil
gisine
asignal =
iattack =
irelease =
isustain =
p3
adamping linsegr
krtapmod poscil
kltapmod poscil
adump delayr
adi deltapi
ad2 deltapi
delayw
aleft =
aright =
outs
endin

</CsInstruments >
<CsScore>
i1 1 3 60 100

i 2 ~+4 3 60 100
i 3 ~+4 3 60 100
i 4 ~+4 3 60 100
i 5 ~+4 3 60 100
i 6 ~+4 3 60 100

</CsScore>
</CsoundSynthesizer >

0, 0, 65537, 10, 1

6

0, 0, 0, 0, O

p4

p5

ikey / 12 + 3

ivelocity / 127 * 84

cpsoct (ioctave)

ampdb (idb)

0.004

0.5

0.25

0.05

ienvattack, ienvdecay, ienvlevel, ienvrelease
800.0, ifrequency * 7.00, gisine

iamplitude, ifrequency + amodulator * aenvelope,

asignal * aenvelope

0.0015

0.002

p3

iattack + isustain + irelease

0.0, iattack, 1.0, isustain, 1.0, irelease, 0.0
0.002, 1.1, gisine, 0

0.003, 1, gisine, 0.5

1.0

0.025 + kltapmod

0.026 + krtapmod

asignal * adamping

asignal + adl

asignal + ad2

aleft * adamping, aright * adamping

Modify the Csound options also:

1. Change the Output file to your audio output port (8, in my case).

2. Change the audio sample frame rate to 44100.

3. Set the MIDI port (to 0, in my case).

34

3.3. Writing Your First Piece

IR cronizcsa s I | e — i
Fle Edt Search View Took Options Language Buffers Help rtevent: T 20.837 T 20.837 M -30.48 -
rrevent: T 20,933 TT 20,933 M -32.61 -
.| [g:utahnomermkgy Crehestra/CSD Edit DR &5 B X |0 | Qab widiKey: prield: 4 value: 62
midivelocity: pfield: 5 value: 11
S8 ienvievel = 0.z8 || reevenc: T 20,844 TT 20.944 Mz -16.89 -16.89
Score file Edit 99 isnvreleas: = 0.05 widiRey: pfield: 4 wvalue: 57
100 aenvelope muadsr ienvattack, ienvdecay, ienvlevel, iemvrele: midivelosicy: prield: S value B2
amodulator osci: -0, ifréquency * 7.00, gisins rrevent: T 20,956 TT 20.956 M - -16.
dacs Qutput file Edit Lo e poscil o Liremueney " 00 9 uidiKey: piield: 4 value: 5D
= poseil iamplicude, ifrequency + amodulator * aemue
i P il e hamverans midiVelocity: pfield: 5 value: 54
o - B 17.000 .. 21,000 T 21.000 TT 21.000 M: -10.97 -11.13
S 1outacl 0.ools rtevent: T 21.235 TT 21.235 M -10.32 -9.3%
Options T 105 irelsass 0.0z rtevent: T 21.236 TT 21.236 M -25.06 -20.53
106 P2 rtevent: T 21.245 TT 21.248 M: -25.25 -17.33
Utiities 107 - iatack + iswstain + irslease rtevent: T 21386 TT 21.386 M: -25.09 -17.87
108 adanping linsegr 0.0, ack, 1 ustain, 1.0, irelease widiRey: prield 4 value: 55
105 asignal - midivelocity: pfield: 5 value: 73
H 4 »] Messages o : T 21,386 TT 2l.388 M: -13.28 -13.28
= = 110 outs = widiKey: piield: 4 walue: 50
111 enain midiVelocity: pfield: 5 value: 72
Goto | |0 Seconds Help v 112 rrevent: T 21,397 TT 21.397 M: -36.48 -36.48
113 - instr & widiKey: prield: 4 value: 60
o midiVelocity: pfield: 5 value: 103
= = = = ... peet N roevent: T Z1.809 TT 21.808 M: -17.50 -15.79
¥ e ” 7 ® rtevent: T 2l.812 TT 2l.812 M: -26.73 -24.81
> | vetocicy - 25 rrevent: T 2l.g86 TT 21.856 M -26.61 -25.81
117 soctave = ikey / 12 43 rtevent: T 21554 IT 21,954 W: -32.54 -28.19
11z 1w = iveloeity / 127 * =4 WARHING: MIDI note overlaps with key 57 on same channel
1 ierecuemcy - cpsoct (1actave) widiKey: pficld: 4 value: 57
fizm - ol i dbs midiveloeity: pfield: 5 value: 82
b piiptnd nidiKey: prield: 4 value: SO
- midivelocity: pfield: 5 value: 5
122 0-s rtevent: T 21.966 TT 21.965 M: _ -36.07 36.07
122 a.z5 midiKey: pield: 4 value: 6
124 - 0,05 midiveloeity: pfield: 5 value: 1D
125 mocadse ienvattack, ienvdecay, ienvlevel, ienvrelss rtevent: TEnas TTazams w1500 -1
+ 7 00, gisine rtevent: 3 3 ;-39
-2 poseit om0, Mixeauency ¢ 70U rrevent: T 23324 TT 23.324 Wi -39.00 -28.7
127 poscil leuplitwds, ifrequency + auwodulator * asuve GiRows Pk S
122 - asignal * aenvelope widiVelocity: pfield: 5 value! &
125 0.0015 rrevent: T 23,353 TT 23.353 I -32.44 -36.11
120 0.00z nidiKey: ptield: "4 value: 5
131 P2 midiVelocity: pfield: 5 value: 66
- Satback 4 isustain se widiKey: pield: 4 value: S0
= i ek e el el widifelocity: pfield: 5 value: 65
adanping insegr -0, dsto stain, 1.0, drelease, rtevent: T 23.481 TT 23.481 M: -28.69 -27.67
134 nrtapmod poscil 0.00z, L1, . rtevent: T 23.431 TT 23.481 M: -36.00 -32.30
135 klvarmes poscil 0.003, 1, gizine, 0.5 rtevent: T 23,620 TT 23.620 M: _ -38.55 -33.78
186 aduup delayr 10 widiKey: pfield: 4 value: 62
137 2L deltapi 0.025 + kltapmod midivelocity: pfield: 5 value: 103
13z saz deltapi 0026 + Ereapmod rtevent: T 23.632 TT 23.632 M: _ -22.19 -22.19
120 Pt tomal - admeping midiKey: pield: 4 value: 57
midiVelocity: pfield: 5 value: Bl
[oleft - asignal + adl uidiKey: pEield: 4 wvalue: S0
141 arighe - asignal + ad? midiVelocity: pfield: S value: 72
14z outs aleft * adanping, aright * adamping B 21.000 .. 24.000 T 24.003 TT 24.003 M: -15.69 -15.87
142 endin Score finished in csoundPerformKsnps ().
< Instruments inactive allocs returned to freespace
1 e end of score. overall mups: -10.32 -9.38
: 0 errors in performance
B 1l Ll 360100 Elapsed timwe at end of performance: real: 25.196s, CPU: 25.%z18s
147 1z ~+2 3 50 100 8270 1024-byte soundblks of floats written to dach
148 i = ~+2 3 60 100 Removing temporary file C:yDOCUME-1\Michael)LOCALS-1\Temphcas. sy
145 3 4 <44 3 60 100 +|||Fewoving temporary file Ci\DOCUME-1iMichael\LOCALS-1\Teuphcsd,sc
. R Rewoving temporary file C:yDOCUME-1\Nichael)LOCALS-1iTepicsd.or |
ine 114, column 46 (IN5) (LF) - O chars selected K| [
Boe@®ad NEACANDIBET MY ORMOE O T DG | [Dienccener .| & wnas Diva. | @uioridzcd 5. | (o MO 2@ b2 @B @ oo
HPERRL DY S =) csound console ... [Csound 5 ol P A DQMNEF Tuesdsy

Figure 3.2.: Playing tutorial2.csd Live

If you plan to do both off-line rendering and live performance, you may wish to
standardize some aspects of your instrument definitions:

1. Always use the new MIDI routing flags such as --midi-key for MIDI input,
not the older MIDI opcodes such as notnum, or even the more recent MIDI
interoperability opcodes such as midinoteonkey.

2. Always put function table statements in the orchestra header, not in the score;
in other words, use ftgen instead of f statements. If you put function tables
in the score, you won’t be able to just throw out a score to use an orchestra
in live performance.

3. Always specify pitch as MIDI key number.
4. Always specify loudness as MIDI velocity.

5. In fact, always use the same set of standard pfields in all your instruments —
you may add additional pfields to set sound generating parameters that are
specific to an instrument.

6. Always use a pset statement to give a default value to each pfield, even if it
is 0.

7. Always use a releasing envelope generator so that notes will end gracefully
during live performance. The names of all the releasing envelope opcodes end
with r.

35

3. Writing Orchestras and Scores

8. Worry about sound quality first, and efficiency second. If your computer is
having trouble keeping up, you can take a good sounding orchestra and figure
out where to substitute more efficient opcodes (oscil for poscil, for example)
much more easily than you can make an orchestra written for efficiency sound
good.

This chapter is only a superficial introduction to a very deep topic — some excel-
lent books have been written on it |1, 5, 6].

36

4. Using CsoundVST

CsoundVST is an extended version of Csound that provides a basic graphical user
interface, the ability to run Python programs that can interact with Csound, a
variety of Python classes to support algorithmic composition (the Silence system
[16]), and the ability to run as a VST instrument (VSTi) or effect plugin in hosts
such as Cubase [17]. One reason for doing this is to write pieces for Csound in
standard music notation. Another reason is that Csound instruments can easily
sound better than most other VSTis, although some Csound orchestras use a lot
of CPU time. This chapter shows how to use Csound as a programmable VSTi in
Cubase SX 3. Other audio sequencers should follow similar procedures.

4.1. Configuring CsoundVST

The following assumes that you have installed Csound from one of the Windows
installers, which include CsoundVST. You must also have installed Python version
2.4 [18], which CsoundVST needs to run. The Windows installer is supposed to
configure Python for CsoundVST. To verify that this has actually happened, run the
Python editor Idle. From Idle’s Run menu, invoke the Python shell. In the Python
shell, type import CsoundVST. If you don’t see an error message, it succeeded. You
should see something like Figure 4.1.

[pythonshell =10| x|
File Edit Shel Debug ©ptions ‘Windows Help

Pychon 2.4.3 (#69, Mar 29 2006, 17:35:34) [MSC v.1310 32 hit (Intel)] on win3z =
Type "copyright'™, "credits" or "license ()" for more informstion.

**
Personal firewall software mwav warn about the connection IDLE
makes to its subprocess using this computer's internal loophack
interface. This connection is not wisible on any external

interface and no data is sent to or received from the Internet.
**

IDLE 1.1.3
- CsoundV3T
o |

Ln: 13|Cal: 4

Figure 4.1.: Importing CsoundVST

If Python runs, but you see an error message when you try to import CsoundVST,
then you need to add the directory where the _CsoundVST.d11 has been installed,
i.e. the C:\Csound\bin directory, to your PYTHONPATH environment variable.

To configure Cubase for CsoundVST, run Cubase. Use the Devices menu, Plugin
information dialog, VST Plug-ins tab. In the Shared VST Plug-ins folders

37

C: Csound bin

4. Using CsoundVST

field type the path to _CsoundVST.d11, again ;C:\Csound\bin. Then click on the
Add button to append the CsoundVST path to the existing Cubase plugin path

(Figure 4.2).

€' Cubase 5%

File Edit Project Audioc MIDI Scores Pool Transport Devices ‘window Help

i€ Plug-in Information

VST Plugdns | Diect<Pugin: | MIDIPlgins |

Shared WST Plug-ins Folders
CrwtahioptiCsoundibin Add | Change | Remove

Update List | Export List | W Show uzed only

s | In | Mame Mb I/C| Category “Yendor W5T Ve | Delay[:| U| MbPs

~

- |DoubleDelay 2712 Effect Houpert Digit 22 0w
- [ModDelay | 272 Effect |Houpert Digitd 22 | gv| [+
|

.11 0

o L= ™ N T
= € rmrEEsn

STHEY IHT.

=10l x|

Figure 4.2.: CsoundVST Plugin Path

Verify that CsoundVST is now available as follows. Quit Cubase and start it again,
and use the Devices menu, VST Instruments dialog to select CsoundVST as a
VSTi. After a brief delay for loading, you should see something like Figure 4.3.

If you don’t see this, see Footnote 4 about environment variables. Look for a
variable named PYTHONPATH. If it exists, append ;C:\Csound\bin to its value. If

does not exist, create it with the value ;C:\Csound\bin. Then try again.

4.2. Using CsoundVST

In order to use CsoundVST:

1. Begin a Cubase song, and create a MIDI track in it.

2. Create an instance of CsoundVST.

3. Load a Csound orchestra in CsoundVST.

4. Configure the orchestra for VST input and output.

38

;C: Csound bin
;C: Csound bin
;C: Csound bin

4.2. Using CsoundVST

€ Cubase SX =13 x|
File Edit Project Audio MIDI Scores Pool Transport Devices Window Help

Hew |_Iersiun| Open.. |I_mporl.. Save ‘Savegs..|Eerfurm| Stop | Edit ‘ Apply |

Settings | Orchestra ‘ Score | Ahout|

|VST M instrument [~ Effect Edit soundfiles with

d: jutahsopt faudacity/andacity

|M0de [Classic [Python | [auto edit after performance

Classic Csound command line
csound temp.orc temp.sco

Figure 4.3.: CsoundVST Loaded

39

4. Using CsoundVST

5. Compile the orchestra.
6. Select CsoundVSt as an output for the MIDI track.

7. Assign your track’s MIDI channel to a Csound instrument number in your
orchestra (in fact, you can create any number of tracks assigned to CsoundVST,
and you can also create multiple instances of CsoundVST).

8. Enter some music — by playing notes in from a MIDI controller, by importing
a MIDI file, by using the piano roll editor, or by writing music notation.

These steps can be carried out as follows.

4.2.1. Create a Cubase Song

Run Cubase, and use the File menu, New item to create a new empty project
(Figure 4.4).

16 Track MIDI Sequencer

24 Track (Mono Inpus) Audio Sequencer
default

MIDI & #udio Play Drder Sequencer
Music (5.1 Suround) For Mavis

Steteo Mastering For Audis CD

A[< [»DI[o[0] > [e]

LCANPPEET N CORMOE O ECIS T | @arreiox -| [T] vexriccenter - ... | /8 mmawrsz:e | wansom2 Blod too7en
Iy Diueehiopticeo... [+ cubase sx Y untitled - Pairt [0 1 am a EI™ & monday

Figure 4.4.: Creating a New Project

Use the Project menu to add a new MIDI Track to your song (Figure 4.5).

4.2.2. Create an Instance of CsoundVST

Use the Devices menu, VST Instruments dialog to create a new instance of
CsoundVST. Right-click the mouse on an empty field to bring up a context menu
listing available VSTis, and select CsoundVST. You should now see the Csound-
VST GUI in Cubase (Figure 4.6). Make sure that the Instrument checkbox is
enabled; if not, enable it, then click on the Apply button to save your preference.

40

4.2. Using CsoundVST

©Cubase 5x

File Edit Project Audio MIDI Scores Pool Transport Devices ‘Window (1) Help
© Cubase SX Praject - Untitled1

=18l

X COR@E D VED ST M | &4rrefox

Teniccenter-[.., | f MnGwazi |

{3 Di{tahioptiCso. |(. Cubase Sx Y csoundust_new_

DaNSOR 2@ pind 1o
M2 t s 2D BEITE vonday

Figure 4.5.: Creating a New Track

© Cubase 5x

File Edt Project Audio MIDI Scores Pool Transport Devices Window (1) Help

Setlinus‘ orcheslral s:ure‘ nhuu\l

‘VET M instrument [~ Eflect | Edit soundfiles with

a: fucan/ope faudacity/ audacity

Wode | Classic ["Fython |~ Aut edit after performance

Classit Csound command line

csound

temp_ore temp.sco

@ f111 0 0
; o RRIESIEIEIER
#start 2

FCOMQEDVECS T | ©arefo +| [T vesniccenter - ... | 8, umawszin |
) DrfukehioptiCeo... |[(o cubase sx

BanSYR2E? Blad woem
Y csoundvst_new_..| [1 2o @D @EITT @ monday

Figure 4.6.: Creating a New Instance of CsoundVST

41

4. Using CsoundVST

4.2.3. Load a Csound Orchestra

Click on CsoundVST’s Open button, navigate to C:\Csound\examples directory,
and open the CsoundVST-nomixer-flags.csd file, which contains a prewritten or-
chestra of sample Csound instruments for VST plugin use (Figure 4.7; for some
reason, the Mixer opcodes don’t seem to work in CsoundVST). You can click on the
Orchestra tab to look at or edit the code.

© Cubase 5% RS
File Edt Project Audio MIDI Srores Pgol Transport Devices Window (1) Help 1-_CsoundysT =

! [::;m E LY B A XN HNew ‘\,fersinn‘ Open.. ‘meun..‘ Save ‘Smgs..lgerfurml Stop | Edit ‘ Apply ‘

Seftings || Orchestra ‘ Score | About |

AR EE AN E R NN S R RS R)
© Copyright {e) 2005 by Michael Gogins.
5 BIL rignts ed

buss for each effect,
ent has o zemd to sach buss

There is o
i and eash 1

i Wizer levels ave set with instr L.

7 Wuabered instruments range from 2 through 100.

5 Bfects range from 200 up

44100
ust ksups for best balance hetween performance and stability.
20

sups
nchnls -

; Adjust ODdbfs te allow for MIDI velosity as decibels.
Gdb iz = 1000000

; Wote that -1 dB for float is 23205 -

2 [

N | 3 | I DIFEE— 4
e @ ORLED IAONGCANDPIREL DY OWOE O ED G T W | S | fzrem., | [Tremece. | Grvoo, | [Gamaa®O D | 22 Gm w00m
YPEEAL @Y S [G cubase . turorialp | Y csoundys. . D um @D B WM EN sy

Figure 4.7.: Loading an Orchestra

4.2.4. Configure the Orchestra for VST

Click on CsoundVST’s Settings tab, and configure the orchestra you have loaded
to work inside a VST plugin by typing the following options in the Classic Csound
command line text field.

csound -m3 -f -h -+rtmidi=null -MO --midi-key-oct=4 --midi-velocity=5 -d -n temp.
orc temp.sco

The meanings of each option are as follows. Each setting that is required for VST
performance is indicated.

csound In CsoundVST, the Csound command must be entered just as if you were
executing this command line on the command line.

-m3 Display Csound messages to level 3: amplitude messages and signal out of range
warnings.

-f Output floating-point samples.

42

C: Csound examples
CsoundVST-nomixer-flags.csd

4.2. Using CsoundVST

-h Do not output a soundfile header (which might sound like a click), since Csound’s
audio output is going straight into Cubase.

-+rtmidi=null Required. Use a “dummy” MIDI driver. CsoundVST’s code inserts
the parts of a MIDI driver into Csound that CsoundVST requires to receive
MIDI from the VST host.

-MO Required. Receive MIDI from port 0 (again, this is a “dummy” that simply
enables Csound to receive MIDI events).

-midi-key-oct=4 Required. Send MIDI note on message key numbers as linear
octaves to pfield 4 of the Csound instruments in the orchestra.

-midi-velocity=5 Required. Send MIDI velocity key numbers to pfield 5 of the
Csound instruments in the orchestra.

-d Required. Display no graphs of wavetables.

-n Required. Do not send any audio output to actual audio devices or soundfiles —
CsoundVST copies audio straight out of the internal buffers of Csound into
the host buffers.

temp.orc Required. CsoundVST stores the Csound orchestra internally in its VST
patch. But to perform the score, Csound must automatically export the or-
chestra using this filename.

temp.sco Required. CsoundVST stores the Csound score internally in its VST
patch. But to perform the score, Csound must automatically export the score
using this filename.

When you have created your options, you must make sure that your edits are saved
with the Cubase File menu, Save command.

4.2.5. Compile the Orchestra

Before you can play an orchestra, it must be compiled. In Cubase, you activate
a VST plugin by clicking on the on/off button (it will light up) that is found on
the upper left hand corner of the VST instrument GUI, or also on the MIDI track
channel settings. You de-activate the plugin by clicking again on the on/off button
(it will go dark). When CsoundVST is activated, it exports its stored orchestra and
score, compiles them, and performs them; they are then ready to receive MIDI input
from Cubase. When CsoundVST is de-activated, it stops performing.

Note: when Cubase loads a song containing CsoundVST, Cubase will automatically
activate CsoundVST. This can cause a delay as the orchestra compiles.

As the orchestra compiles, which normally takes a second or so, Csound will print
informational messages to the message text area at the bottom of the Settings tab.
When the messages stop scrolling, compilation is complete (Figure 4.8).

43

4. Using CsoundVST

S

Fle Edi Project fudo MIDI Scores Pool Iransport Devices Window(1) Help

O Cubase 5% Project - Untitled]
0 D=EER | i oy = | bew |versin | open. | mpor.. | save |saveas.|perorm| st | e | amy |

Settmgsl Orchestra ‘ Su:rel nhum‘

|VST u " Effiect | Editsoundfiles with

T r——

Mode [“Classic [Pwthon | [~ auto editafter performance:

Clagsic Csound command line
csound b —trcwidisnull -MO -d n w3 --midi-key-oct=4 -—-midi-t

foable 113:

foable 1ld:

foable 115:

frable Ll6:

foable 117:

feable 1la:

feable 1ls:

orch new loaded

audio buffered in 128 sample-frame blocks

ENDED CppSeund:
ENDED CppSound: :

&]

— | LA = B I GIFEa—-

Y2
st (G ORED IAONLCANPIBET I NRMOBOTO G DM |Sunes . | Mzrem. | [rencce. | Gmpon. | [Zaw a9 b 22 Sm a0em
HPpERRLS DY S [Go cubase . % turorialoef | Y esoundvs. . D axm @10 LW EN sindey

Figure 4.8.: Compiled Orchestra

4.2.6. Track Setup

Before you can actually get any sound out of CsoundVST, you must select it as an
output in your MIDI track. In the Track panel, out field, use the left mouse button
to pop up a list of available outputs. If it has been activated, _CsoundVST should
be one of these. Select it.

4.2.7. MIDI Channel Setup

Now, assign your MIDI track’s channel number. The orchestra contains many more
than 16 instruments, but you can assign MIDI channels to instruments numbered
higher than 16 by using the massign statement in the Csound orchestra header.

Create a part in your MIDI track, set up a loop for the part, use the Track
panel’s chn field to assign your track’s MIDI channel to a number between 1 and
16, inclusive.

Start recording, and play some notes on your MIDI controller. If notes begin
appearing in your part, you know your MIDI interface is working. You may hear
nothing at all, or you may hear a loud distorted sound. Use the VST instrument
volume control to adjust the gain, if necessary (Figure 4.9). If you still hear nothing,
check the Csound messages pane, and re-activate Csound if necessary.

If you make any changes to the Csound orchestra, be sure you use the Cubase File
menu, Save command to save your edits. These edits are saved inside the Cubase
song (.cpr) file, not to the Csound orchestra that you originally exported, although
you can re-export the .csd file if you wish.

44

4.2. Using CsoundVST

e

Fle Edi Project Audio MIDI Scores Pool Transport Devices Window (1) Help

O Cubase 5X Project - test2.cpr

“soundvST [

= 3]

BS

Boad®9 g LSS YOO E O VEDG T H | @toreesd-sc.. | & wincs - Diuta... | [T] TexnicCenter -[.. | |0 o8 P @ % 25 1 52 1043m
dPEP sy S (e Cubase ¥ @ o SOMSBRERETD B Monday

Figure 4.9.: Channel Setup

4.2.8. Write Some Music

There are of course many ways to write music with CsoundVST in Cubase, or any
other VST-enabled audio sequencer or notation software. You can play in tracks,
write music notation, type in event lists, and so on. Figure 4.10 shows CsoundVST
rendering a Buxtehude fugue that has been imported from a public domain MIDI
file. Note that a single instance of Csound is being used to render all 6 tracks,
each of which may play 1, 2, or more voices. Each track is assigned to a different
MIDI channel, which in turn is assigned to a different instrument number in the
CsoundVST. csd orchestra.

Although in this piece the CPU load (as shown by the leftmost vertical meter on
the transport bar) is light, it is easy to create instruments and effects in Csound that
use a lot of CPU cycles. In such cases, you can use Cubase’s own off-line rendering
facility, or you can render one track at a time by soloing it and freezing it.

45

4. Using CsoundVST

© Cubase SX =lsix]
File Edit Project Audio MIDI Scores Pool Transport Devices Window (1) Help 1-_Csound¥ST
=

O Cubase 5X Project - tutorial3.cpr

7 Lk

Settlngsl Orchestra ‘ Scurel nhum‘

|VST u ["Effect | Edit soundfiles with
[a: s at/ope randacicys andacicy
Mode [“Classic [Pwthon | [~ auto editafter performance:
Clagsic Csound command line
e [J1J 15| [csound b ~tremsasemadl -mo w3 --midi-key-oct=

[Joar vandes [Jvisden s+

rrevent:

reevent:

Normal =

Hiox (MIDI) ~ y " i
. | o o %

Asat] |G ORED AT AP IBE IDWOBOVEOST W
dpE2aLd Y S

&y wincus - Dut... | A2 Terminal pr.. |

123 My Docurnerts [e cubase sx

=

Figure 4.10.: Scoring with Csound

46

5. Python Scripting

There may be thousands or even hundreds of thousands of notes in a single piece of
music. Consequently, most musicians do not compose pieces for Csound by typing
in one note at a time.

The commonest way of writing Csound scores is to write programs to generate
scores. This is called generative music or algorithmic composition. This, again, is a
very deep subject |19, 20, 21, 22].

Of course, if you are the kind of a composer who hears music in his or her head and
you just need to get the notes you hear into Csound, you can use Sibelius, export a
MIDI file, and have Csound perform your MIDI file using the --midifile option:

csound --midi-key=4 --midi-velocity=5 --midifile mypiece.mid -RWZfo myrendering.wav

On the other hand, if you are such a composer and you have some facility with
programming, it is probably just as easy to write snippets of code to generate runs,
chord progressions, minimalist-style cells, and so on. In other words, a programming
language is just another form of music notation. For some purposes, code is a better
form of notation. More significantly, composing by programming opens up vast new
musical possibilities:

e You can compose things that transcend the limits of your imagination.

If you have composed something that transcends the limits of your imagination
but you don’t like it, you can change the code until you do like it — sometimes.

With recursive or fractal algorithms, a single change in the code can have
global effects on the piece, at every level of structure at the same time.

e You can compose things that are too tedious to notate by hand, or too precise
for performers to play.

In my view, this is the outstanding reason to use Csound — it is an ideal orchestra
for algorithmic composition.

Score generators have been written in many languages. But some languages can
operate Csound directly. At the time of writing, these include C [3], C++ [23], Java
[24], Lisp [25], Lua [26], and Python [18]. This chapter is about using Python.

Python is an open source, dynamic, high-level, object-oriented programming lan-
guage with some features of functional programming. Python is widely used, and
there is a huge number of libraries available for it, including libraries for scientific
computing that turn out to be very useful for computer music. Of all the languages
I have used, both in my career as a programmer and in my career as an algorithmic
composer, Python has been by far the easiest and most productive language to learn
and to use.

47

5. Python Scripting

The remainder of this chapter assumes that you have at least some experience
with Python. If not, running through the Python tutorial at the beginning of the
Python manual should be enough to get you started [27].

Csound comes with not just one but two Python interfaces:

csnd This is a Python interface to the complete Csound API, also including facilities
for loading Csound .csd, .orc, and .sco files, and for building up .sco files
in memory one statement at a time — very useful for score generation.

CsoundVST Includes everything in csnd, plus my Silence system [16] for algorithmic
composition based on music graphs, which represent scores as hierarchical
structures in somewhat the same way that a ray tracer represents a visual
image as a hierarchical scene graph.

This tutorial uses csnd. First we use it simply to run an existing piece — the
tutorial?2.csd piece from Chapter 3. Then we use Python to generate a piece using
a Koch curve, in which each segment of a curve is replaced by a generator curve [28].
We use an existing Csound orchestra to render the piece we have generated. Finally,
we experiment with changing the parameters of the compositional algorithm.

5.1. Running Csound from Python
1. Run Idle, the Python editor that comes with Python.
2. Create a Python file, tutorial4.py.

3. Import csnd. To verify that the import succeeded, print a directory of the
csnd module, which should list all the API functions and constants in the
module.

4. Create an instance of csnd.CppCsound, which is the Python interface to the
high-level Csound C++ class that has facilities for managing Csound files, as
well as the rest of the standard Csound API.

5. Enable Python to print Csound messages by calling csound . setPythonMessageCallback().
6. Load the tutorial2.csd piece.

7. Set the Csound command-line options. Note that the command must be com-
pletely spelled out, as if you were entering it on the command line, including
csound and the names of the .orc and .sco files.

8. Print out the loaded and modified .csd file by calling print csound.getText().

9. Render the piece by calling csound.perform(). You should see the Csound
messages printing out in the Idle Python Shell window.

This is illustrated in Listing 5.1 and Figure 5.1.

48

5.2. Generating a Score

Listing 5.1: Running Csound with Python

Import the Csound API extension module.
import csnd

Print a directory of its attributes

(variables, functions, and classes)

to verify that it was properly imported.
print dir(csnd)

Create an instance of Csound.

csound = csnd.CppSound ()

Enable Csound to print console messages
to the Python console.

csound.setPythonMessageCallback ()

Load the tutorial2 piece created earlier.
csound.load(’tutorial2.csd’)

Set the Csound command for off-line rendering.

csound.setCommand (>csound -RWfo tutorial4.py.wav temp.orc temp.sco’)
Print the complete .csd file.

print csound.getCSD ()

Export the .orc and .sco file for performance.

csound . exportForPerformance ()

Actually run the performance.

csound .perform()

5.2. Generating a Score

In Csound, a score is basically a list of i statements, each with its own list of pfields.
This tutorial has always used the same layout of pfields. This has advantages for
algorithmic composition. It makes it easy to build up scores algorithmically.

A sample piece is shown in Listing 5.2. To understand what is happening, read
the comments in the code.

Some of the important points are as follows. The score generator is written as
a Python class, and an instance of Csound is created as a class member. After
generating the score, the code appends an e (end) statement to the score, which turns
off the reverb instrument and other effects that are running on the CsoundVST.csd
orchestra’s mixer buss with indefinite durations. The code tests to see if it is running
as __main__, in which case a score is generated (as in this case), or whether it is
running because it was imported by another module, in which case no score is
generated. The other module can then initialize the generator, derive other classes
from it, and otherwise use tutorial5.py as a class library.

Listing 5.2: Koch Curve Score Generator

import csnd

49

5. Python Scripting

SIS . python Shell =lolx]
Fle Edt Forms Run Options Windows Help Fle Edt Shel Debug Options Wdows Help
csnd |15 1ines reaa |
air fesnd) inser 1
coound = cend. CppSound () ingtr 2
csound. load (' tucorial?.csd') inscr 3
csound. setCommand (' csound ~RVfo test.wav temp.orc temp.sco' | instr 4
sound. getCsD () inscr S
coound. exportForPer formance () inscr 6
csound. setPythontessageCal lback) Elapsed time at end of orchestra compile: real: 0.051s, CPU: 0.047s
csound. perform () sorting score ...
. done

Elapsed time at end of score sort: real: 0.068s, CPU: 0.063s
Csound wersion 5.03.0 beta (double samples) Jul 31 2006
aisplays suppressed

PSET: isno=s, pmax=s

..0.000000. .. .0.000000. . ..0.000000. . ..0.000000. . . .0.000000. .
OABFS level = 32768.0

chnl 1 weing instr 6

frable 101:

orch now loaded

audio buffered in 128 sample-frame hlosks

writing 1024-byte hlks of LlOAts to Lest.vay (WAW)

SECTION 1:
ENDED CppSound: :compile.

B 0.000 .. 1.000 T 1.000 TT 1.000 H: 0.0 0.0
new alloc for instr i:

B 1.000 .. 5.000 T 5.000 TT 5.000 M: 2028.1 2028.1
new alloc for instr 2:

E 5.000 .. S9.000 T 9.000 TT 5.000 H: 2028.1 2028.1

new alloc for inscr 3:
B 9.000 .. 13.000 T 13.000 TT 13.000 M: 2023.7 2023.7

nev alloc £or instr 4:

B 13.000 .. 17.000 T 17.000 TT 17.000 M: 2025.1 2025.1

new alloc for instr 5:

B 17.000 .. 21.000 T 21.000 TT 21.000 M: 2024.9 2024.9

new alloc for instr 6:

nxtopds = 01019338 opdslim = 0101kZDS

B 21.000 .. 24.000 T 24.003 TT 24.003 M: 3349.8 3878.3

B 24.000 .. 24.054 T 24.054 TT 24.054 H: 294.0 §75.3

Score finished in csoundPerformKsmps ().

inactive allocs returned to freespace

end of score. overall amwps: 3349.8 3878.3

0 errors in performance

Elapsed time at end of performance: real: 1.406s, CPU: 1.407s

16575 1024-byte soundblis of floats written to test.uvav [VAV)
Removing temperary file C:)DOCUME~1\Michael)LOCALS~1YTemp\csZ.srt ...
Elapsed time = 1.658000 seconds.

ENDED CppSound: :perform.

3> _
L 11[Cak 0 Lri 231 [Cal 4
distart| | (3 X CEH@E O VED ST | S wnes-Diuta... | [T] tesniccenter - L... |[@2 Firefox . RO 2FZ L@@ 1029em
o U e £ 12, coldfrapp- ... | o Adsbsreader | Bllzpvtone | e 1 s @2 @l # Tuesday

H O H W

Figure 5.1.: Running Csound with Python in Idle

Class to represent transforming a note

by modifying an implicit initial note,

creating a duration, adding or subtracting pitch,
adding or subtracting loudness.

class Transform(object):

def __init__(self, duration, deltaKey, deltaVelocity):
self .duration = duration
self.deltaKey = deltaKey
self.deltaVelocity = deltaVelocity
self.normalizedDuration = 1.0

Class for generating a piece using a long initial note
and a set of transforms, recursively layering atop generated notes.

class Generator (object):

50

def __init__(self):
Create an instance of CppSound for rendering.
self.csound = csnd.CppSound()
self.csound.setPythonMessageCallback ()
self.csound.load(’../examples/CsoundVST.csd’)
To contain a list of transforms.
self .transforms = []
Assign instruments to levels (level:instrument)
self .arrangement = {0:12, 1:4, 2:21, 3:7, 4:37}
Assign gains to levels (level:gain)
self .gains = {0:1.5, 1:1.25, 2:1, 3:1, 4:1}
Assign pans to levels (level:pan)
self .pans = {0:0, 1:-.75, 2:.75, 3:-.5, 4:.5, 5:-.25, 6:.25%}
def addTransform(self, deltaTime, deltaKey, deltaVelocity):
self .transforms.append (Transform(deltaTime, deltaKey, deltaVelocity
))
self .normalize ()
def normalize (self):
sum = 0.0
for transform in self.transforms:

H o H

5.2. Generating a Score

sum = sum + transform.duration
for transform in self.transforms:
transform.normalizedDuration = transform.duration / sum

Generate a score in the form of a Koch curve.

Each note in a generating motive

will get a smaller copy of the motive nested atop it,

and so on.

def generate(self, level, levels, initialTime, totalDuration, initialKey,
initialVelocity) :

If the bottom level has already been reached,
return without further recursion.
if level >= levels:

return
time = initialTime
key = initialKey
velocity = initialVelocity
for transform in self.transforms:
instrument = self.arrangement[level]
duration = totalDuration * transform.normalizedDuration
key = key + transform.deltaKey
velocity = velocity + (transform.deltaVelocity * self.gains
[levell)
phase = 0

pan = self.pans[levell

print "%2d: %2d %9.3f %9.3f %9.3f %9.3f %9.3f %9.3f" % (
level, instrument, time, duration, key, velocity, phase
, pan)

self.csound.addNote (instrument , time, duration, key,
velocity, pan)

Recurse to the next level.

self.generate(level + 1, levels, time, duration, key,
velocity)

time = time + duration

Render the generated score.
def render(self):

Ends indefinitely playing effects on the mixer buss.

self.csound.addScoreline("e 2")

Print the generated score for diagnostic purposes.

print self.csound.getScore ()

High-resolution rendering.

self.csound.setCommand(’csound -R -W -Z -f -r 88200 -k 88200 -o
tutorialb.py.wav temp.orc temp.sco?’)

self .csound.exportForPerformance ()

self.csound.perform()

self.csound.removeScore ()

If running stand-alone, generate a piece;
if imported by another module, do not generate a piece
(enables the Generator class to be used as a library).

if __name__ == ’__main__"’:
Create a generator with four notes
in the same interval relationship as B, A, C, H,
i.e. Bb, A, C, B,
i.e. 0, -1, +3, -1,
offset by a tritone.
generator = Generator ()
generator .addTransform (10, 6 + O, 0)
generator.addTransform(8, -1, 3)
generator .addTransform(6, + 3, -2)
generator.addTransform(12, -1, 0)

Generate a 5 minute piece.
generator .generate(0, 3, 0, 300, 38, 84)
generator.render ()

Now run the piece. I find that SciTE [14] actually makes a better environment for

o1

5. Python Scripting

Python programming with Csound than Idle (as long as I don’t have to do source-
level debugging, which SciTE doesn’t support), because if you kill Csound while it is
running from Idle, Csound often keeps running anyway as a zombie process, whereas
if you kill Csound while it is running from SciTE; it really dies and you can start it
again. You can use the Tools menu, Go command to run Python on the currently
edited .py file, and you can use the Tools menu, Stop Executing command to
stop Python. Figure 5.2 shows SciTE running the tutorial5.py piece.

S tutorialS.py - STE [1 of 2] =181

Fle Edt Seach Wew Iook Options Lenguage Buffers Help
DSEAR[&S] s =R X[~[Qa@

1 tutorials py |g:snunnvsmsn |

w iieltine v mow Lowied =
s S - tiered in 126 sample-irame blocks
= velesity o amisialvalecisy uricing Lozaiyes biks of floscs w0 turerials.py.vay (VA7)
53 — for transfo: SECTION 1
o shetrusent = sele. arrangeuens(levell
5 Guration = oralburarion * transfora.normalisedurarion
s ey = ey + vrans form, dsltakey Lo Lor e 4 e+ corone
o el velocity + (txansiom. deltaVelosicy * self.gainslievell) oTFSSse opds
82 Bha OFFEDZC opdslim = OOFFCCCC
= pan = self.pansflevel] or imstr 71
e 120 59.9f 9.8 49,96 4331 33,01 §3.06% @ (leval, nsvrumem, tine, curesion, key, val [T
e o 4. 0ot e (instrumene., tine, dursvion, key, valecicy, pan) s
e e +2 tha nast 2ava1 o
e - (evel = 1, Levels, vine, Guravion, hey, velociord o 1o o 220
c 220 umar 3 p-fisids bu i given ©
e 90T 6.4% T €430 K. fousd.s s478%.2
- or ineur 21
& rtopds - 01014p48 opdsiia - oLoiscEs
- o cas0 L 11604 T 11874 11 11674 m se726.2 121470.
- o 11,574 | 15492 T 15,452 TT 15,40z M. 108101.6 leszel o
& o 5i43z || 23140 T 230148 TT 23145 M. 1241750 2083855
» e a1toc Tor imetr 4

mreopas = 0101484 opdsiin - oLotBels
s md <D T -z < -7 83200 <k $3200 o Tutorialf.py.vay Cemp.ore emp.seo’) e o T L o L i76910.1 2256907
B self und. exportForPer fornanced) B 28.23%2 .. 32.407 T 32.407 TT 32.407 M: 187233.3 134535.6
74 B 32.407 .. 35.454 T 35.494 TT 35.494 M: 308076.2 337335.9
% B 35.494 .. 41.667 T 41.667 TT 41.667 M: 241150.3 234536.¢
7€ B 41.867 .. 45.525 T 45.525 TT 45.525 M: 117228.5 160432.0

B 45.525 .. 48.611 T 48.611 TT 48.611 M: 225413.1 245824.6
B 48.611 .. 50.326 T 50.5z5 TT 50.926 M: l49614.6 160703.1
B £0.92¢ .. SE.556 T E5.555 TT S5.556 M: L68406.5 149016.2

97 # If rwming stam
98 % if imported by
99 # (emablas the G

an B 55.556 .. €3.272 T £9.272 TT £3.272 M: 145178.6 171018.6
8l —if _neme — '_main ' B 83272 .. 69.444 T £3.444 TT 63.444 M: 113707.0 103120.6
a2 B 55,444 . 74.074 T 74.074 TT 74.074 M: 158138.5 1409531
= # Crasta 2 gamerstor with fous notes B 74.074 .. 23.333 T 22.233 TT 23.332 M: 100308.3 117522.9
84 # im the seme interval relastionship as B. A, ¢. H. :;B:;: = D;DJEDDE opdolin - 0101FD7C

&5 #ree BeACE B 53.333 .. 80.477 T 88.477 TT 88.477 M: 91394.5 1247453
e #doe 00 L3 L B 82.477 .. 92.593 T 92.593 TT 92.593 M: 163380.3 190189.4
0 # offsat by a tritoma. B 92.595 .. 95.679 T 95.679 TT 95.5679 M: 299435.2 9198L1.9
& B 35675 ..101.852 TLOL.652 TT101.852 M: 260503.7 24106%.2
9 BL01.852 ..105.367 T105.967 TT105.967 M: 312465.4 311174.6
£ Bl05.967 ..109.259 T105.259 TT10S.259 M: 35733L.6 2904995
a1 BL09.259 ..111.728 T111.728 TT1l1.72% M: 369498.1 292215.6
sz BL11.726 ..116.667 TL16.667 TT116.667 M: 306155.2 0631712
53 = . BL16.667 ..115.753 T115.753 TT115.753 M: 244741.7 252478.5
94 BL19.753 ..122.222 T122.222 T1122.227 M: 229659.5 190422.2
55 # Gomerate & § mimute piece Blez.222 ..124.074 T124.074 TT124.074 M: 272919.7 2578L8.6
% _l|p1z24.074 127775 T127.778 TTL27.776 M: 220746.2 210842.0

o generator.generace(n, 3, 0, 300, 3, 4 _,;l Bl27.778 ..133.351 T133.951 TT133.951 M: 137010.5 l443lo.l
3

line 1, colurn 1 (INS) (LF) - O chrs selected

Bstat| @ R ED IACALCONP P Ban (2 WO E O ED S T M | 2 wnos Dita., | [Texviccenter .. |[@72 Frefox AEIEYRFNDmEE 0eem
HphERaLHEY S &1z cofrapn- ... | o Adebereader | Bllzpvttons o] o 1 &P ADBMITE]E ruestay

Figure 5.2.: Running Csound with Python in SciTE

Note also that you can load a Csound orchestra file (CsoundVST. csd in this case)
into SciTE at the same time as you are editing or running a Python script.

5.3. Varying the Parameters

Once you have rendered this piece, you can experiment with changing the numbers
inside the generators, adding and removing segments from the generators, trying
more layers, and so on.

For example, try just the following changes: change the number of levels from 3
to 4, and change the second transform’s MIDI key movement from -1 to +1. You
will see what two small changes do the overall structure of the piece.

52

A. Extra Features and Their
Requirements

If you wish to use any of these extra features, you should install the other required
software first according to its standard instructions.

ATS opcodes ATS is a library of C and Lisp functions for spectral Analysis, Trans-
formation, and Synthesis of sound based on a sinusoidal plus critical-band noise
model. A modeled sound in ATS can be sculpted using a variety of transfor-
mation functions. The ATS opcodes in Csound use these transformations, but
to use the opcodes, you must install ATS and analyze some sounds [29].

csoundapi” is an external enabling Csound to run inside Pure Data, another SWSS.
To use it, you must install Pure Data [30].

tclesound is a GUI front end for Csound that use the Tcl/Tk scripting environment.
To use tclesound, you must install Tel/Tk [31].

VST hosting opcodes enable Csound to use external VST plugins as opcodes. To
use them, of course, you must acquire them.

Java API To use this, you must install the Java software development kit (SDK)

[24].

Lisp API To use this, you must install the Lisp programming language [25].

Lua API To use this, you do not need to install the Lua programming language —
it comes in the Windows installer as luajit.exe! But, if you do use the Lua
API, you may to install various Lua libraries and helpers that you can find
starting at http://www.lua.org.

Python API to use this, you must install the Python programming language, specif-
ically version 2.4 [18].

23

csoundapi~
luajit.exe
http://www.lua.org

A. Extra Features and Their Requirements

54

B. Helper Applications

The following is a highly selective subset of the various applications that the Csound
community has found helpful for working with Csound. All are cross-platform and
should work, at a minimum, on both Windows and Linux. All are freely available,
open source applications.

B.1. Audio Editors

You can play Csound files using the media player that comes with your operating
system, but a dedicated audio editor is much more useful. It will enable you to see
your soundfiles, edit out clicks, normalize amplitudes, and more.

B.1.1. Audacity

Audacity [15] is the most powerful freely available, cross-platform audio editor. Get
it.

B.2. Text Editors

You can edit Csound scores and orchestras with a word processor, but you should
find a real programmer’s editor much more useful. Each of the following has add-ons
for working with Csound files.

B.2.1. Emacs

Emacs [32] has been widely used as a programmer’s editor for decades. It has various
Csound environments.

B.2.2. SciTE

Not as powerful as Emacs, more user-friendly than vi. SciTE [11] is the editor that
I most often use with Csound. You can get a Csound syntax coloring package for
SciTE, which can run both Csound and Python from its own shell.

B.3. Composing Environments

A variety of specialized music composition environments have been developed, either
specifically for Csound, or that can work with Csound. These are mainly intended
for art music and algorithmic composition.

95

B. Helper Applications

B.3.1. athenaCL

Christopher Ariza’s athenaCL [33] is a powerful Python-based composing environ-
ment that is designed to work with Csound, and which has incorporated within itself
many facilities from other earlier composition software. It is designed to be used as
an interactive command-line shell, but can also be used as a Python class library.

B.3.2. Blue

Steven Yi’s Blue [31], written in Java, provides a visual composing environment for
Csound based on time lines. Blue can also run Python scripts.

B.3.3. CsoundVST

CsoundVST, by me, contains a set of classes that implement my idea of music graphs
[16]. It is the only composing environment that is distributed with Csound. You
must install Python to use the Silence classes. You can write Silence programs either
using Csound VST itself as an editor and Python shell, or from a Python development
environment, or from a Python-aware text editor. I use either CsoundVST or SciTE
as my main composing environment.

B.3.4. Common Music

Rick Taube’s Common Music [35] is a very powerful Lisp-based programming lan-
guage dedicated to algorithmic composition. It contains facilities for automatically
generating Csound scores.

B.3.5. Pure Data

Miller Puckette’s Pure Data [30] is, itself, a widely used SWSS. However, it is also
used as a composing environment, and it contains a csoundapi” external that can
receive events from Pure Data, route them to Csound using the Csound API, and
feed audio or events from Csound back into Pure Data.

B.4. Programming Languages

The following programming languages can use Csound through the Csound API.
Such languages are especially useful for algorithmic composition.

B.4.1. C/C++

C |3] and C++ [23] are still the standard programming languages for “systems pro-
gramming,” i.e. writing the fastest, most complex, and most demanding software.
Most operating systems are written in C, and most commercial applications are
written in C++ or C. You can use Csound as a “synthesis engine” in your own C
and C-++ applications by using the Csound C or C++ APIs, and linking with the
Csound library.

56

B.4. Programming Languages

B.4.2. Java

Java [24] is another widely used language. It is only about a third as efficient as C or
C-++, but it is somewhat easier to program. The Csound API has a Java interface.

B.4.3. Lisp

Lisp [25] is the second-oldest (after FORTRAN) high-level programming language.
It is particularly noteworthy for being the implementation language for Common
Music, an excellent algorithmic composition system that is designed to work with
Csound.

B.4.4. Lua

Lua [20] is a lightweight, interpreted high-level language. As it is relatively new, it
features a good balance of features from earlier languages. On Windows, there is a
just-in-time compiler for Lua that can run Lua programs as fast as compiled Java
code (i.e., about 1/3 as fast as C or C++). The Windows installers for Csound
actually installs not only the Lua interface to the Csound API, but also the Lua
just-in-time compiler itself.

B.4.5. Python

Python [18] is my favorite programming language for working with Csound. I find
it is easier to read and write than other programming languages, and it has very
extensive libraries, e.g. for scientific computing and for computer graphics.
Although Python is an interpreted language and therefore does not run fast,
Python can call into precompiled extensions written in C or other efficient languages.
The Csound API’s Python interfaces are themselves examples of such extensions.

57

B. Helper Applications

58

C. Audio Quality

Currently, studio recording is done to stereo or surround sound (5.1 or 7.1) on
computers, hard disk recorders, or professional digital audio tape (DAT) recorders
to 24-bit or floating-point samples at a rate of 48,000, 88,200, 96,000 or even 192,000
sample frames per second. This is “high-resolution audio.” At this time, the only
consumer electronics formats that can reproduce high-resolution audio are DVD-A
and SACD.

CD-quality audio is of distinctly lower resolution: stereo sound with 16 bit integer
samples at 44,100 samples per second.

High-resolution audio, on good speakers or earphones, sounds distinctly airy,
present, spacious, and undistorted. CD-quality audio, by contrast, can sound flat,
shrill, harsh, and flat or boxed in. Usually, this is the result of cumulative mistakes
made in this less forgiving medium — CDs actually are precise enough to reproduce
most of what we hear. Therefore, CDs made by experts can sound very good in-
deed, except for their more limited dynamic range and less detailed quiet sounds.
Normally, it takes educated ears to hear these differences.

Vinyl records of high quality are not directly comparable to digital recordings.
They have their own virtues and flaws. They are more detailed, airy, and spacious
than CDs, but can have harmonic distortion, rumbling, hiss, and crackling. In gen-
eral, well-made records, especially if pressed from direct metal masters, are roughly
equal to high-resolution audio in aesthetic quality, even if they are not really as
precise.

If you are not used to high-resolution audio, you will need to educate your hearing
before you can achieve it (or even hear it). Develop your ears by listening critically
to outstanding work on flat, deep, high-resolution audio systems, e.g. real studio
monitor speakers or good headphones, at loud but not overwhelming volume in a
quiet, sound-adsorbent environment. Listen to your own work in direct comparison.
Learn to be objective and to set your own feelings aside, and to hear what others
say about your work without getting defensive.

Listen to live orchestral and chamber music, and big-band jazz, from good en-
sembles, in good halls, from good seats. This is the gold standard for sound — even
high-resolution audio can’t touch it. Also listen to outstanding recordings of orches-
tral, chamber, piano, rock, folk, jazz, New Age, film music (and again, film music)
and of course computer music. For computer music, listen to academic computer
music, EA, "dance music", mods and demos, and even chip tunes. Each of these
genres has something valuable to say about audio beauty and music production
quality that is relevant to computer music.

Csound is eminently capable of high-resolution audio. It can render to any number
of channels, at any sampling rate, using floating-point samples. Csound also con-
tains high-quality software implementations of all the effects applied by mastering

29

C. Audio Quality

engineers. Therefore, Csound is as good or better than the best studio gear.

If you have a professional or semi-professional audio interface on your computer,
you can play high-resolution soundfiles made with Csound (although you will not
hear their full dynamic range unless you have professional gear).

Specific technical advice in decreasing order of importance (all this assumes you
don’t care how long it takes to render a piece, only if it sounds good):

10.

60

. Some of the sounds made by Csound have no counterpart in other kinds of

music. They may contain excessive high frequencies, aliasing distortion, or
other kinds of noise. On the other hand, the sounds can be of extreme clarity
and precision — hyper-real. You need to be constantly aware of what your
sounds actually sound like.

Always render to floating-point soundfiles at 88,200 samples per second. You
can translate them to 24 bits or to CD quality later if you want, but having the
extra precision and dynamic range is vital. There is no audible difference in
quality between 88,200 and 96,000 samples per second, but 88,200 can trans-
lated to CD quality by direct downsampling, whereas 96,000 requires fancy
filtering and lots of time.

If you use sampled sounds, use the best samples you can possibly find. Pay if
you must!

Also if you use sampled sounds, beware of their own ambience clashing with
any reverberation or other ambience you set up using Csound. Samples may
also have unwanted noise — it may be possible to de-noise them (Csound has
facilities for doing this too).

Use a “de-clicking” envelope to wrap all your instrument final output signals.

. Watch out for aliasing, which can make sounds buzzy or harsh, in frequency

modulation and wavetable oscillators. Aliasing happens when the signal con-
tains frequencies above half the sampling rate (the Nyquist frequency), so that
under digital sampling they reflect or fold back under the Nyquist frequency.
For so-called “analog” sounds with simple waveforms such as square or saw-
tooth waves, use non-aliasing opcodes such as vco or vco2. You do not need
to worry about aliasing with plain sine or cosine waves.

For final renderings, always render with ksmps=1.

Use a-rate variables for envelopes and, in general, wherever opcodes permit.
This enables decent results with ksmps=100 or so.

Use only the most precise interpolating oscillators, such as poscil or poscil3.

For wavetable oscillators, the larger the wavetable, the less noisy the signal;
65537 is not too big.

11.

12.

13.

14.

Be vigilant for artifacts and noise introduced by various digital signal process-
ing algorithms, especially echoes in reverberation. Don’t over-use effects — this
is a very common error that you can fix by listening to good examples of studio
and live recording.

Try rendering with dither (-Z option).

Experiment with some modest compression, e.g. by using the compress or dam
opcodes.

Use the 64-bit sample version of Csound.

61

C. Audio Quality

62

Bibliography

]

2]

3]

4]

[5]

6]

|7l

18]

19]
[10]

[11]

[12]

[13]

[14]

Barry Vercoe, John ffitch, Istvan Varga, Michael Gogins, et al. Csound. http:
//csound.sourceforge.net. 1

Max Mathews. The Technology of Computer Music. The MIT Press, Cam-
bridge, Massachusetts, 1969. 1

Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language.
Prentiss-Hall, 2 edition, 1988. 1, 47, 56

Richard Boulanger, editor. The Csound Book. The MIT Press, Cambridge,
Massachusetts, 2000. 1, 36

Riccardo Bianchini and Alessandro Cipiriani. Virtual Sound: Sound Synthesis
and Signal Processing — Theory and Practice with Csound. ConTempo, Rome,
1998. English edition (2000), translated by Agostino Di Scipio. 1, 36

Andrew Horner and Lydia Ayers. Cooking with Csound Part 1: Woodwind and
Brass Recipes. A-R Editions, Middletown, Wisconsin, 2002. 1, 36

James McCartney et al. SuperCollider, 2004. http://supercollider.
sourceforge.net. 1

Cycling 74. Max/MSP. http://www.cycling74.com/products/maxmsp.html.
1

Native Instruments. Reaktor 4. http://www.native-instruments.com. 1

Barry Vercoe, John ffitch, et al. The Canonical Csound Reference Manual,
2006. http://www.csounds.com/manual. 1, 10

Perry R. Cook. Real Sound Synthesis for Interactive Applications. A.K. Peters,
Natick, Massachusetts, 2002. http://ccrma-www.stanford.edu/software/
stk. 4

Kelly Fitz, Lippold Haken, et al. Loris. http://www.cerlsoundgroup.org/
Loris. 4

Michael Gogins. Double Blind Listening Tests of Csound 5 Compiled with
Single-Precision and Double-Precision Samples, 2006. http://ruccas.org/
pub/Gogins/csoundabx.pdf. 4

SciTE: A Free Source Code Editor for Win32 and X, 2006. http://wuw.
scintilla.org/SciTE.html. 9, 10, 51, 55

63

http://csound.sourceforge.net
http://csound.sourceforge.net
http://supercollider.sourceforge.net
http://supercollider.sourceforge.net
http://www.cycling74.com/products/maxmsp.html
http://www.native-instruments.com
http://www.csounds.com/manual
http://ccrma-www.stanford.edu/software/stk
http://ccrma-www.stanford.edu/software/stk
http://www.cerlsoundgroup.org/Loris
http://www.cerlsoundgroup.org/Loris
http://ruccas.org/pub/Gogins/csoundabx.pdf
http://ruccas.org/pub/Gogins/csoundabx.pdf
http://www.scintilla.org/SciTE.html
http://www.scintilla.org/SciTE.html

Bibliography

[15]
[16]

[17]
18]
[19]

[20]
[21]

[22]

23]

[24]

[25]
[26]

27]

28]

[29]

30]
[31]
32]
[33]

64

Audacity. http://audacity.sourceforge.net. 10, 55

Michael Gogins. Music Graphs for Algorithmic Composition and Synthesis with
an Extensible Implementation in Java. In Mary Simoni, editor, Proceedings of
the 1998 International Computer Music Conference, pages 369-376, San Fran-
cisco, California, 1998. International Computer Music Association. 37, 48, 56

Steinberg Media Technologies GmbH. http://www.steinberg.net. 37
Guido van Rossum. Python, 2006. http://www.python.org. 37, 47, 53, 57

Lejaren Hiller and L.M. Isaacson, editors. Fzperimental Music: Composition
with an FElectronic Computer. McGraw—Hill, New York, New York, 1959. 47

Tom Johnson. Self-Similar Melodies. Editions 75, Paris, 1996. 47

David Cope. The Algorithmic Composer. Number 16 in Computer Music and
Digital Audio. A-R Editions, Middleton, Wisconsin, 2000. 47

Heinrich K. Taube. Notes from the Metalevel. http://pinhead.music.uiuc.
edu/~hkt/nm/. 47

Bjarne Stroustrup. The C++ Programming Language, 2006.
http://www.research.att.com/ bs/C—++.html. 47, 56

Sun Developer Network. The Source for Java Developers, 2006. http://java.
sun.com. 47, 53, 57

Association of Lisp Users, 2006. http://www.lisp.org/alu/home. 47, 53, 57

Robert Terusalemichy, Waldemar Celes, and Luiz Henrique de Figueirido. The
Programming Language Lua, 2006. http://www.lua.org. 47, 57

Guido van Rossum and Jr. (Ed.) Fred L. Drake. Python Tutorial, 2006.
http://docs.python.org/tut /tut.html. 48

Heinz-Otto Peitgen, Hartmut Jiirgens, and Dietmar Saupe. Chaos and fractals:
New frontiers of science. In Chaos and Fractals: New Frontiers of Science,
chapter 5, pages 229-296. Springer-Verlag, 1992. 48

Juan Pampin, Oscar Pablo Di Liscia, Pete Moss, and Alex
Norman. Analysis — transformation — synthesis (ats), 2006.
http://www.dxarts.washington.edu/ats/. 53

Miller Puckette. Pure Data. http://puredata.info. 53, 56
Tcl Developer Xchange, 2006. http://www.tcl.tk. 53

Richard W. Stallman et al. GNU Emacs, 2006. http://www.gnu.org/
software/emacs/. 55

Christopher Ariza. athenaCL. http://www.flexatone.net/athena.html. 56

http://audacity.sourceforge.net
http://www.steinberg.net
http://www.python.org
http://pinhead.music.uiuc.edu/~hkt/nm/
http://pinhead.music.uiuc.edu/~hkt/nm/
http://java.sun.com
http://java.sun.com
http://www.lisp.org/alu/home
http://www.lua.org
http://puredata.info
http://www.tcl.tk
http://www.gnu.org/software/emacs/
http://www.gnu.org/software/emacs/
http://www.flexatone.net/athena.html

Bibliography

[34] Steven Yi. blue. http://csounds.com/stevenyi/blue. 56

[35] Rick Taube. Common Music. http://commonmusic.sourceforge.net/doc.
56

65

http://csounds.com/stevenyi/blue
http://commonmusic.sourceforge.net/doc

	Introduction
	Getting Started
	On Windows
	Obtaining Csound
	Installing Csound
	Configuring Csound
	Off-Line Rendering
	Real-Time MIDI Performance

	On Linux
	On Apple

	Writing Orchestras and Scores
	Signal Flow Graphs
	How Csound Works
	Csound Files
	Performance Loop

	Writing Your First Piece
	Simple Sine Wave
	Simple Sine Wave, De-Clicked
	Simple Sine Wave, De-Clicked, ADSR Envelope
	Frequency Modulation, De-Clicked, ADSR Envelope
	Frequency Modulation, De-Clicked, ADSR Envelope, Time-Varying Modulation
	Frequency Modulation, De-Clicked, ADSR Envelope, Time-Varying Modulation, Stereo Phasing
	MIDI Performance

	Using CsoundVST
	Configuring CsoundVST
	Using CsoundVST
	Create a Cubase Song
	Create an Instance of CsoundVST
	Load a Csound Orchestra
	Configure the Orchestra for VST
	Compile the Orchestra
	Track Setup
	MIDI Channel Setup
	Write Some Music

	Python Scripting
	Running Csound from Python
	Generating a Score
	Varying the Parameters

	Extra Features and Their Requirements
	Helper Applications
	Audio Editors
	Audacity

	Text Editors
	Emacs
	SciTE

	Composing Environments
	athenaCL
	Blue
	CsoundVST
	Common Music
	Pure Data

	Programming Languages
	C/C++
	Java
	Lisp
	Lua
	Python

	Audio Quality

