Csound and CsoundVST

Michael Gogins
gogins@pipeline.com

25th July 2004

Abstract

This document explains how to download, build, install, extend, and
use Csound and CsoundVST on Windows and Linux.

1 Introduction

Csound is a unit-generator based, user-programmable computer music
system. It was originally written by Barry Vercoe at the Massachusetts
Institute of Technology in 1984 as the first C language version of this type
of software. Since then Csound has received numerous contributions from
researchers, programmers, and musicians around the world.

Around 1991, John ffitch ported Csound to Microsoft DOS. Csound
currently runs on many varieties of UNIX and Linux, Microsoft DOS and
Windows, all versions of the Macintosh operating system including Mac
OS X, and others.

Csound is maintained by John fitch at
http://www.sourceforge.net/projects/csound. Documentation for the
Csound language is maintained by Kevin Conder at
http://kevindumpscore.com/. Csound’s “home page” is maintained by
Richard Boulanger at http://csounds.com.

There are newer computer music systems that have graphical patch
editors (e.g. Max/MSP, PD, jMax, or Open Sound World), or that use
more advanced techniques of software engineering (e.g. Nyquist or Su-
perCollider). But Csound still has the largest and most varied set of unit
generators, is the best documented, runs on the most platforms, and is the
easiest to extend. It is possible to compile Csound using double-precision
arithmetic throughout for superior sound quality. In short, Csound must
be considered one of the most powerful musical instruments ever created.

Csound development is ongoing, and currently stands at version 5 beta.
New features in Csound 5 include the GNU Lesser General Public License,
plugin unit generators, an application programming interface (API) for
embedding Csound in other software, and the use of widely accepted third-
party libraries for cross-platform development: libsndfile for reading and
writing soundfiles, PortAudio for reading and writing digital audio from
sound cards, and the Fast Light Tool Kit (FLTK) for graphics.

To create music with Csound:

2 DOWNLOADING 2

1. Write an orchestra (.orc file) that creates instruments and signal
processors by connecting unit generators (also called opcodes, in
Csound-speak) using Csound’s simple programming language.

2. Write a score (.sco file) that specifies a list of notes and other events
to be rendered by the orchestra.

3. Run Csound to compile the orchestra and score, run the sorted and
preprocessed score through the orchestra, and write digital audio
out to a soundfile or sound card.

CsoundVST is an extended version of Csound that adds a graphi-
cal user interface, C++ and Python APIs, Python scripting, a library
of Python extension modules for algorithmic composition, a VST plugin
interface, and a Mathematica interface.

In addition to this “canonical” version of Csound and CsoundVST,
there are other versions of Csound and other front ends for Csound, many
of which can be found at http://csounds. com.

2 Downloading

Csound is hosted at http://www.sourceforge.net/projects/csound.
Source and binary packages are available from the files link off that
page.

The latest Csound source code is available through the Concurrent
Versions System (CVS)(http://www.cvshome.org). To download Csound
sources using CVS, run the following commands:

cvs -d:pserver:anonymous@cvs.sourceforge.net:/cvsroot/csound login

cvs -z3 -d:pserver:anonymous@cvs.sourceforge.net:/cvsroot/csound co csoundb

Information about accessing the CVS repository may be found in the
SourceForge document “Basic Introduction to CVS and SourceForge.net
(SF.net) Project CVS Services”.

If you wish to become a Csound developer, obtain a SourceForge login,
and then apply to John ffitch at the http://www.sourceforge.net/projects/-
csound site.

3 Building

Csound and CsoundVST are built using the Python package scons, not

with makefiles or GNU autotools. Experience shows that scons build

systems are easier to write, easier to use, and run faster than autotools

build systems. The only file used to build the entire Csound system is the

SConstruct file, which is a Python script run by the scons shell script.
To build Csound 5:

1. Obtain the Csound source code from a SourceForge Csound 5 pack-
age file, or from SourceForge CVS.

2. Install and configure the following software packages:

3 BUILDING

(a) Python (required) for running the build (also used for Csound-
VST scripting), from http://www.python.org.

(b) SCons (required) for running the build, from
http://wuw.scons.org.

(c) libsndfile (required) for reading and writing soundfiles, from
http://wuw.mega-nerd.com/libsndfile/.

(d) PortAudio for reading and writing real-time audio, from
http://wuw.portaudio.com/.

(e) FLTK version 1.1.x for displaying graphs of function tables, and
for widget opcodes, from http://www.fltk.org.

If you also want to build CsoundVST, you must configure the FLTK
libraries to enable threads (./configure --enable-threads). And you
will need to install these additional packages:

1. The Software Interface and Wrapper Generator (SWIG) for gener-
ating Python interfaces to CsoundVST (required for CsoundVST),
from http://www.swig.org.

2. The boost C++ template libraries for random numbers and linear al-
gebra (required for CsoundVST), from
http://www.boost.org.

3.1 Platforms

Currently, Csound 5 builds and runs on Windows using either the Cygwin
environment (http://www.cygwin.com), or the MinGW
(http://wuw.mingw.org) environment with the MSys shell
(http://www.mingw.org/msys.shtml). Both of these environments are
free, open source, and emulate the standard Unix/Linux environment and
tools. On Linux, Csound 5 builds using the standard tools. Unix should
work the same way as Linux.

On Windows, the Cygwin build procedure is more like the Linux one.
However, the MinGW build is preferred, since the resulting executables
do not require the Cygwin DLLs and run faster.

3.1.1 Linux

If you have properly installed all the dependencies mentioned above, you
can build Csound 5 and CsoundVST simply by opening a console, chang-
ing to the csoundb directory, and executing the scons command. To see
the various configuration options, execute scons -h.

3.1.2 Windows with Cygwin

The build procedure for Cygwin is identical to Linux. However, Cyg-
win comes with its own customized version of Python, while CsoundVST
uses the regular version of Python from http://www.python.org, which
is built with Microsoft Visual C++. Make sure to install SCons in the
Cygwin version of Python, and use that version for the build, even though
CsoundVST will use the Windows version of Python.

4 INSTALLING

3.1.3 Windows with MinGW and MSys

For MinGW, you may need to patch SCons as follows. Change line 51 of
SCons/Tool/mingw.py from:

cmd = SCons.Util.CLVar (’$SHLINK’, ’$SHLINKFLAGS?’)
to:

SCons.Util.CLVar ([>$SHLINK’>, ’>$SHLINKFLAGS’])

cmd

It is highly recommend that you update your MinGW installation from
the SourceForge site to the “current” level for core gcc, g+, binutils, utils,
and the Windows API headers and libraries (w32api).

Rebuild and install a version of libsndfile no earlier than:

http://www.mega-nerd.com/tmp/libsndfile-1.0.10pre4.tar.gz

For PortAudio, I have found that ./configure --with-winapi=wmme
works and other configure options do not. If you can build PortAudio
version 19 with MinGW and DirectX, ASIO, or Windows kernel stream-
ing, please let me know how to do it.

The build procedure for MinGW is similar, but not identical, to the
Cygwin procedure. The MSys shell does not allow the user to execute
Python commands directly. Therefore, you need to install the Windows
versions of Python and SCons, make sure that Python is in your Windows
executable path, and run the build like this:

$ python c:/tools/python23/scripts/scons

You will also need to customize the custom.py file to declare to scons
the locations of required header files and libraries, since on Windows there
is no standard location for these as there is on Unix and Linux.

4 Installing

Once you have either unpacked a binary distribution, or built Csound
from sources, you will need to install and configure Csound so that it will
run properly on your system.

4.1 Csound

Consult the Csound language documentation for instructions on how to
install and configure Csound.

On Windows, make sure that the windows_dl1ls directory is in your
PATH environment variable, or else copy the files in it to your Windows
system32 directory.

4.2 CsoundVST

CsoundVST requires some additional configuration:

1. Make sure that the Csound executables are in your PATH environment
variable.

5 EXTENDING

2. On Windows, make sure the directory containing the _CsoundVST.d11l
file and all the Csound plugin opcodes is also in your PATH variable.
On Unix and Linux, either install the Csound program in one of the
system bin directories, typically /usr/local/bin, and the Csound
and plugin shared libraries in one of the system lib directories, typ-
ically /usr/local/1lib; or make sure that the directory containing
the _CsoundVST. so file and all the Csound plugin opcodes is in your
LD_LIBRARY_PATH environment variable. This variable may have a
different name in different operating systems.

3. On all platforms, CsoundVST requires that you have Python in-
stalled on your computer. The directory containing the _CsoundVST
shared library and the CsoundVST. py file must be in your PYTHONPATH
environment variable, so that the Python runtime knows how to load
these files.

5 Extending

Csound uses plugin unit generators. These are dynamic link libraries
(DLLs) on Windows, and loadable modules (shared libraries that are
dlopened) on Linux. It is relatively easy to extend Csound by writing
new unit generators in C or C++.

The following assumes you already know how to make a regular Csound
unit generator. If you don’t, consult the Csound language documentation.
Supposing that your unit generator is named xxx, perform the following
steps:

1. Write your xxx.c and xxx.h file as you would for a regular Csound
unit generator. Put these files in the csound5/0pcodes directory.

2. #include "csdl.h" in your unit generator sources. This causes the
plugin development environment to emulate the regular Csound unit
generator development environment.

3. Add your OENTRY records and unit generator registration functions
at the bottom of your C file. Example (but you can have as many
unit generators in one plugin as you like):

\#define S sizeof

static OENTRY localops[] = {
{ "xxx", S(XXX), 5, "a", "ao", (SUBR)xxxset, NULL, (SUBR)zxxx}
}s

/*

* The following macro from csdl.h defines

* the "opcode_size()" and "opcode_init()"

* opcode registration functions for the localops table.
*/

LINKAGE

4. Add your plugin as a new target in the plugin opcodes section of the
SConstruct build file:

5 EXTENDING 6

pluginEnvironment.SharedLibrary (’xxx’,
Split(’’’0Opcodes/xxx.c
Opcodes/another_file_used_by_xxx.c
Opcodes/yet_another_file_used_by_xxx.c’’’))

5. Run the Csound 5 build in the regular way.

5.1 About 0ENTRY

The OENTRY structure (see H/csoundCore.h, Engine/entryl.c, and Engine/rdorch.c)
contains the following fields:

name, dspace, thread, outarg, inargs, isub, ksub, asub, dsub

dspace There are two types of opcodes, polymorphic and non-polymorphic.
For non-polymorphic opcodes, the dspace flag specifies the size of
the opcode structure in bytes, and arguments are always passed to
the opcode at the same rate. Polymorphic opcodes can accept argu-
ments at different rates, and those arguments are actually dispatched
to other opcodes as determined by the dspace flag and the following
naming convention:

Oxffff The type of the first argument determines which unit gen-
erator function is actually called: XXX — XXX_a, XXX_i, or
XXX_k.

Oxfffe The types of the first two arguments determine which unit
generator function is actually called: XXX —> XXX_aa, XXX_ak,
XXX_ka, or XXX_kk, as in the oscil unit generator.

Oxfffd Refers to one argument, but does not allow i type, as in the
peak unit generator.

Oxfffc Similar to Oxfffe, but deals with division by zero — thus,
allows a, k and i type arguments.

thread Specifies the rate(s) at which the unit generator’s functions are
called, as follows:

thread Description
0 i-rate or k-rate (B out only)
i-rate
k-rate
i-rate and k-rate
a-rate
i-rate and a-rate
i-rate and (k-rate or a-rate)

~N oD W N

outargs Lists the return values of the unit generator functions, if any.
The types allowed are:

6 USING

Description

Type

o Ko R

m

i-rate scalar

k-rate scalar

a-rate vector

k-rate scalar or a-rate vector
w-rate spectral data type

f-rate streaming pvoc fsig type
multiple outargs (1 to 4 allowed)

inargs Lists the arguments the unit generator functions take, if any. The
types allowed are:

Type

Description

1

NN<S P .00 0B 2B HFWWHH=HKXO K

i-rate scalar

k-rate scalar

a-rate scalar

k-rate scalar or a-rate vector
w-rate spectral data type
f-rate streaming pvoc fsig type
string

begins an indefinite list of iargs (any count)

begins an indefinite list of args (any count and rate)
begins an indefinite list of iargs (must be an odd count)
optional, defaulting to 0

optional, defaulting to 1

optional, defaulting to 10

optional, defaulting to .5

optional, defaulting to -1

optional, defaulting to 127

begins an indefinite list of aargs (any count)

begins indefinite list of kargs (any count)

begins alternating kakaka. .. list (any count)

isub The address of the unit generator function (of type int (*SUBR) (void
*)) that is called at i-time, or null for no function.

ksub The address of the unit generator function (of type int (*SUBR) (void
*)) that is called at k-rate, or null for no function.

asub The address of the unit generator function (of type int (*SUBR) (void
*)) that is called at a-rate, or null for no function.

dsub The address of the unit generator function (of type int (*SUBR) (void
*)) that is called after performance, or null for no function.

6 Using

Assuming that you have installed and configured the software, Csound
and CsoundVST can be operated in a variety of modes and configurations.

6 USING

The .csd and .py files in the examples demonstrate a few of these modes
of operation. Some of these scores are simple, others are moderately
complex.

You may need to edit the --opcode-1ib option in the Csound com-
mand in some of the .csd and .py files to match your environment. Sim-
ilarly, you may need to edit the SoundFont file paths in instrument def-
initions that use the fluid SoundFont 2 player opcode to match your
environment.

For real-time audio output, with or without MIDI control, you will
probably want to tune the kr and ksmps orchestra statements, and the
-b and -B command-line options, to give you the shortest possible la-
tency that does not cause clicks or stutters in Csound’s audio output. For
example, with the Windows multimedia library build of the PortAudio
library, sr = 44100, kr = 441, ksmps = 100, -b100 and -B2000 give a
CD-equivalent audio sampling rate of 44,100 frames per second, a control
sampling rate of 441 control samples per second with 100 audio sample
frames per control sample, an audio output software buffer size of 100
sample frames, and an audio output device hardware buffer size of 2,000
sample frames, which yields an audio output latency of about 45 millisec-
onds — not fast enough for precise and expressive keyboard playing, but
fast enough for smooth control of effects or algorithmically generated or
triggered scores.

On Linux with ALSA, the audio output device should be selected using
a special form of the -odac option, for example -odac:plughw:0 for device
0. The plughw option translates Csound’s audio output to the format
expected by the sound card. With ALSA, latencies of a few milliseconds
are possible, and expressive real-time instrumental performance should be
quite feasible.

6.1 Csound
6.1.1 The csound Command

The original method for running Csound was as a console program. This,
of course, still works. Running csound without any arguments prints out a
list of command-line options, which are more fully explained in the Csound
language documentation. Normally, the user executes something like
csound -W -omysoundfile myorchestra.orc myscore.sco or, to use the
single-file Csound structured data (.csd) format, csound myscore.csd.

Csound can read and write soundfiles (off-line rendering), read and
write digital audio using a sound card (real-time rendering), read and
write MIDI files, and read and write MIDI using a MIDI interface and
controller (real-time control). See the Csound language documentation
for more details.

6.1.2 The Csound API

The Csound API consists of the Csound library (libcsound.a) and the
Csound header file (csound.h). You can build Csound into your own

6 USING

software very easily using this API. For example, the Csound command
itself is made this way:

#include "csound.h"

int main(int argc, char **argv)
{
// Create Csound.
void *csound = csoundCreate(0);
// One complete performance cycle.
int result = csoundCompile(csound, argc, argv);
if (‘result)
{
while (csoundPerformKsmps (csound) == 0){}
csoundCleanup (csound) ;
}
// Destroy Csound.
csoundDestroy (csound) ;
return result;

6.2 CsoundVST

CsoundVST is a multi-function front end for Csound, based on the Csound
API. CsoundVST runs as a stand-alone graphical user interface to Csound,
or as a VST plugin in hosts such as the Cubase audio sequencer. Csound-
VST provides both a C+-+ and a Python API to Csound, and to a set of
classes for algorithmic composition.

CsoundVST contains a built-in Python interpreter. With Python, the
user can generate a score, import a MIDI file, process notes, load and run
a Csound orchestra, and in general do anything that can be done either
with Csound or in Python.

6.2.1 Standalone

To run CsoundVST as a stand-alone front end to Csound, execute
CsoundVST. When the program has loaded, you will see a graphical user
interface with a row of buttons along the top. Click on the Open... button
to load a .csd file. You can also click on the Open... button and load
a .orc file, then click on the Import... button to add a .sco file. You
can edit the Csound command, the orchestra file, or the score file in the
respective tabs of the user interface. When all is satisfactory, click on the
Perform button to run Csound. You can stop a performance at any time
by clicking on the Stop button.

6.2.2 The CsoundVST API

CsoundVST extends the Csound API with C++. There is a C++ class
for the Csound APT proper, another C++ class for manipulating Csound
files in code, and additional classes for algorithmic composition based on
music space. All these C++ classes also have a Python interface in the

6 USING 10

CsoundVST Python extension module. For more information, consult the
Doxygen-generated files in the csound5/doc directory.

You can build CsoundVST into your own software using the _CsoundVST
shared library and CsoundVST.hpp header file. For example, the Csound-
VST stand-alone graphical user interface program is made this way:

#include <CsoundVST.hpp>
#include <CsoundVstFltk.hpp>

int main(int argc, char **argv)

{
CsoundVST *csoundVST = CreateCsoundVST();
AEffEditor *editor = csoundVST->getEditor();
editor ->open(0);
return O;

}

There is also a high-level C API for CsoundVST, declared in
frontends/CsoundVST/csoundvst_api.h. Any program able to inter-
face with C calling convention functions can use this API. For exam-
ple, a Mathematica 5.0 notebook can use the .NET/Link package’s
DefineDLLFunction to access the CsoundVST API to create an instance
of CsoundVST, load an orchestra, generate a score using the power of
Mathematica, and render that score.

6.2.3 Python scripting

You can use CsoundVST as a Python extension module. In fact, you can
do this either in a standard Python interpreter, such as Python command
line or the Idle Python GUI, or in CsoundVST itself in Python mode.

To use CsoundVST in a standard Python interpreter, import Csound-
VST.

import CsoundVST

The CsoundVST module automatically creates an instance of Cpp-
Sound named csound, which provides an object-oriented interface to the
Csound API. In a standard Python interpreter, you can load a Csound
.csd file and perform it like this:

C:\Documents and Settings\mkg>python

Python 2.3.3 (#51, Dec 18 2003, 20:22:39) [MSC v.1200 32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.
»> import CsoundVST

»> csound.load("c:/projects/csound5/examples/trapped.csd")

1

»> csound.exportForPerformance ()

1

»> csound.perform()

BEGAN CppSound::perform(5, 988ee0)...

BEGAN CppSound::compile(5, 988ee0)...

Using default language

OdBFS level = 32767.0

6 USING

Csound version 5.00 beta (float samples) Jun 7 2004

libsndfile-1.0.10pre6

orchname: temp.orc

scorename: temp.sco

orch compiler:

398 lines read
instr
instr
instr
instr
instr
instr
instr
instr

O 00 ~NO Ol WN -

instr
instr

=
= O

instr

[
N

instr

Jure
w

instr

©
3]

instr

©
©

instr
sorting score ..
. done
Csound version 5.00 beta (float samples) Jun 6 2004
displays suppressed
OdBFS level = 32767.0
orch now loaded
audio buffered in 16384 sample-frame blocks
SFDIR undefined. using current directory
writing 131072-byte blks of shorts to test.wav

WAV
SECTION 1:
ENDED CppSound::compile.
ftable 1:
ftable 2:
ftable 3:
ftable 4:
ftable 5:
ftable 6:
ftable 7:
ftable 8:
ftable 9:
ftable 10:
ftable 11:
ftable 12:
ftable 13:
ftable 14:
ftable 15:
ftable 16:
ftable 17:

11

6 USING 12

ftable 18:

ftable 19:

ftable 20:

ftable 21:

ftable 22:

new alloc for instr 1:

B 0.000 .. 1.000 T 1.000 TT 1.000 M: 32.7 0.0

new alloc for instr 1:

B 1.000 .. 3.600 T 3.600 TT 3.600 M: 207.6 0.1

B 93.940 .. 94.418 T 98.799 TT281.799 M: 477.6 85.0

B 94.418 ..100.000 T107.172 TT290.172 M: 118.9 11.5

end of section 4 sect peak amps: 25950.8 26877.4

inactive allocs returned to freespace

end of score. overall amps: 32204.8 31469.6
overall samples out of range: 0 0

0 errors in performance

782 131072-byte soundblks of shorts written to test.wav WAV
Elapsed time = 13.469000 seconds.

ENDED CppSound: :perform.

1

»>

To use CsoundVST itself as your Python interpreter, click on the
CsoundVST Settings tab, and select the Python check box in the Csound
performance mode box. Do not create a new CppSound object; you must
use the builtin csound object in the CsoundVST module.

The koch.py script shows how to use Python to do algorithmic com-
position for Csound. You can use Python triple-quoted string literals to
hold your Csound files right in your script, and assign them to Csound:

csound.setOrchestra(’’’sr = 44100

kr = 441
ksmps = 100
nchnls = 2
Odbfs = .1

instr 1,2,3,4,5 ; FluidSynth General MID

I; INITIALIZATION

; Channel, bank, and program determine the preset, that is, the actual sound.
ichannel = pl

iprogram = p6

ikey = p4
ivelocity = pb + 12
ijunk6 = pé6

ijunk7 = p7

; AUDIOD

istatus = 144;
print iprogram, istatus, ichannel, ikey, ivelocityaleft, aright
fluid "c:/projects/csound5/samples/VintageDreamsWaves-v2.sf2", \\

6 USING 13

iprogram, istatus, ichannel, ikey, ivelocity, 1

outs aleft, arightendin’’?)

csound.setCommand ("csound --opcode-lib=c:/projects/csound5/fluid.d1l \\
-RWdfo ./koch.wav ./temp.orc ./temp.sco")

csound. exportForPerformance ()

csound.perform()

To run your script in Csound VST, click on the Perform button.

6.2.4 VST Plugin

The following instructions are for Cubase SX. You would follow roughly
similar procedures in other hosts.

Use the Devices menu, Plug-In Information dialog, VST Plug-Ins tab,
Shared VST Plug-ins Folder text field to add your csound5 directory to
Cubase’s plugin path. You can have multiple directories separated by
semicolons.

Quit Cubase, and start it again.

Use the File menu, New Project dialog to create a new song.

Use the Project menu, Add Track submenu, to add a new MIDI track.

Use the pencil tool to draw a Part on the track a few measures long.
Write some music in the Part using the Event editor or the Score editor.

Use the Devices menu (or the F11 key) to open the VST Instruments
dialog.

Click on one of the No VST Instrument labels, and select _ Csound-
VST from the list that pops up.

Click on the e (for edit) button to open the _CsoundVST dialog.

Click on the Open button to bring up the file selector dialog. Navigate
to a directory containing a Csound csd file suitable for MIDI performance,
such as csound/CsoundVST /examples/CsoundVST.csd. Click on the OK
button to load the file. You can also open and import a suitable .orc and
.sco file as described above.

Click on the VST Instruments dialog’s on/off button to turn it on.
This should compile the Csound orchestra. Note: If you don’t compile the
orchestra, you won’t be able to assign the plugin to a track.

In the Cubase Track Inspector, click on the out: Not Assigned label
and select _ CsoundVST from the list that pops up.

On the ruler at the top of the Arrangement window, select the loop
end point and drag it to the end of your part, then click on the loop button
to enable looping.

Click on the play button on the Transport bar. You should hear your
music played by CsoundVST.

Try assigning your track to different channels; a different Csound in-
strument will perform each channel.

When you save your song, your Csound orchestra will be saved as part
of the song and re-loaded when you re-load the song.

You can click on the Orchestra tab and edit your Csound instruments
while CsoundVST is playing. To hear your changes, just click on the
CsoundVST Perform button to recompile the orchestra.

You can assign up to 16 channels to a single CsoundVST plugin. How-
ever, you can’t have more than one CsoundVST plugin in the same song!

7 LICENSES

7 Licenses

7.1 Csound and CsoundVST

Csound is (©1991-2003 by Barry Vercoe and John ffitch.

CsoundVST is (©2001-2004 by Michael Gogins.

Csound and CsoundVST are free software; you can redistribute them
and/or modify them under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either version 2.1
of the License, or (at your option) any later version.

Csound and CsoundVST are distributed in the hope that they will
be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with Csound and CsoundVST; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
1307 USA.

7.2 Virtual Synthesis Technology

Virtual Synthesis Technology (VST) PlugIn interface technology by Stein-
berg Soft- und Hardware GmbH.

CsoundVST source code contains modified versions of source code files
from the VST SDK distributed by Steinberg. These files are to be used
only for building CsoundVST. You are not licensed to use these files for
any other purpose. If you make a derived product based on CsoundVST
or the modified VST source files herein, you must apply to Steinberg for
your own license to use the VST SDK.

8 Contributors

Csound contains contributions from musicians, scientists, and program-
mers from around the world. They include (but are not limited to):

e Allan Lee

e Andres Cabrera
e Barry Vercoe

e Bill Gardner

e Bill Verplank

e Dan Ellis

e David Macintyre
e Eli Breder

e Gabriel Maldonado
e Greg Sullivan

e Hans Mikelson

e Istvan Varga

14

9 TO DO

9

Jean Piche
John ffitch
John Ramsdell
Marc Resibois
Mark Dolson
Matt Ingalls
Max Mathews
Michael Casey
Michael Clark
Michael Gogins
Mike Berry
Paris Smaragdis
Perry Cook
Peter Neubacker
Peter Nix
Rasmus Ekman
Richard Dobson
Richard Karpen
Rob Shaw
Robin Whittle
Sean Costello
Steven Yi

Tom Erbe
Victor Lazzarini

Ville Pulkki

To Do

This is a “to do” list, not necessarily complete, and in no particular order
of priority or time, for Csound and CsoundVST:

1.
2.

See also the To-fix-and-do file in the csound5 directory.

Get the ASIO version of PortAudio working on Windows, or write a
kernel streaming PortAudio driver, for latency adequate to real-time
performance.

Create a Pure Data (PD) adapter opcode that will run Pure Data
(PD) patches in Csound orchestra, for both MIDI and audio input
and output.

Create a Mathematica interface for CsoundVST.

Create a COM interface for CsoundVST.

15

9 TO DO

6. Create better examples, especially to demonstrate the use of Python
and of VST plugins. One example should be a live performance
instrument with a Python GUI that controls instrument parameters
or algorithmic composition parameters in real time.

7. Complete the work of making Csound multi-instantiable.

8. All Csound documentation in this one PDF.

16

