
Csound and CsoundVST

Michael Gogins
gogins@pipeline.com

22nd May 2004

Abstract
This document explains how to download, build, install, extend, and

use Csound and CsoundVST on Windows and Linux.

1 Introduction

Csound is a unit-generator based, user-programmable computer music
system. It was originally written by Barry Vercoe at the Massachusetts
Institute of Technology in 1984 as the �rst C language version of this type
of software. Since then Csound has received numerous contributions from
researchers, programmers, and musicians around the world.

Around 1991, John �tch ported Csound to Microsoft DOS. Csound
currently runs on many varieties of UNIX and Linux, Microsoft DOS and
Windows, all versions of the Macintosh operating system including Mac
OS X, and others.

Csound is maintained by John �tch at
http://www.sourceforge.net/projects/csound. Documentation for the
Csound language is maintained by Kevin Conder at
http://kevindumpscore.com/. Csound's �home page� is maintained by
Richard Boulanger at http://csounds.com.

There are newer computer music systems that have graphical patch
editors (e.g. Max/MSP, PD, jMax, or Open Sound World), or that use
more advanced techniques of software engineering (e.g. Nyquist or Su-
perCollider). But Csound still has the largest and most varied set of unit
generators, is the best documented, runs on the most platforms, and is the
easiest to extend. It is possible to compile Csound using double-precision
arithmetic throughout for superior sound quality. In short, Csound must
be considered one of the most powerful musical instruments ever created.

Csound development is ongoing, and currently stands at version 5 beta.
New features in Csound 5 include the GNU Lesser General Public License,
plugin unit generators, an application programming interface (API) for
embedding Csound in other software, and the use of widely accepted third-
party libraries for cross-platform development: libsnd�le for reading and
writing sound�les, PortAudio for reading and writing digital audio from
sound cards, and the Fast Light Tool Kit (FLTK) for graphics.

To create music with Csound:

1

2 DOWNLOADING 2

1. Write an orchestra (.orc �le) that creates instruments and signal
processors by connecting unit generators (also called opcodes, in
Csound-speak) using Csound's simple programming language.

2. Write a score (.sco �le) that speci�es a list of notes and other events
to be rendered by the orchestra.

3. Run Csound to compile the orchestra and score, run the sorted and
preprocessed score through the orchestra, and write digital audio
out to a sound�le or sound card.

CsoundVST is based on Csound, and adds a graphical user interface,
C++ and Python APIs, Python scripting, a library of Python extension
modules for algorithmic composition, a VST plugin interface, and aMath-
ematica interface.

In addition to this �canonical� version of Csound and CsoundVST,
there are other versions of Csound and other front ends for Csound, many
of which can be found at http://csounds.com.

2 Downloading

Csound is hosted at http://www.sourceforge.net/projects/csound.
Source and binary packages are available from the files link o� that
page.

The latest Csound source code is available through the Concurrent
Versions System (CVS)(http://www.cvshome.org). To download Csound
sources using CVS, run the following commands:

cvs -d:pserver:anonymous@cvs.sourceforge.net:/cvsroot/csound login

cvs -z3 -d:pserver:anonymous@cvs.sourceforge.net:/cvsroot/csound co csound5

Information about accessing the CVS repository may be found in the
SourceForge document�Basic Introduction to CVS and SourceForge.net
(SF.net) Project CVS Services�.

If you wish to become a Csound developer, obtain a SourceForge login,
and then apply to John �tch at the http://www.sourceforge.net/projects/-
csound site.

3 Building

Csound and CsoundVST are built using the Python package scons, not
with make�les or GNU autotools. Experience shows that scons build
systems are easier to write, easier to use, and run faster than autotools
build systems. The only �le used to build the entire Csound system is the
SConstruct �le, which is a Python script run by the scons shell script.

To build Csound 5:
1. Obtain the Csound source code from a SourceForge Csound 5 pack-

age �le, or from SourceForge CVS.
2. Install and con�gure the following software packages:

3 BUILDING 3

(a) Python (required) for running the build (also used for Csound-
VST scripting), from http://www.python.org.

(b) SCons (required) for running the build, from
http://www.scons.org.

(c) libsnd�le (required) for reading and writing sound�les, from
http://www.mega-nerd.com/libsndfile/.

(d) PortAudio for reading and writing real-time audio, from
http://www.portaudio.com/.

(e) FLTK version 1.1.x for displaying graphs of function tables, and
for widget opcodes, from http://www.fltk.org.

If you also want to build CsoundVST, you will need in addition:
1. The Software Interface and Wrapper Generator (SWIG) for gener-

ating Python interfaces to CsoundVST (required for CsoundVST),
from http://www.swig.org.

2. The boost C++ template libraries for random numbers and linear al-
gebra (required for CsoundVST), from
http://www.boost.org.

3.1 Platforms

Currently, Csound 5 builds and runs on Windows using either the Cygwin
environment (http://www.cygwin.com), or the MinGW
(http://www.mingw.org) environment with the MSys shell
(http://www.mingw.org/msys.shtml). Both of these environments are
free, open source, and emulate the standard Unix/Linux environment and
tools. On Linux, Csound 5 builds using the standard tools. Unix should
work the same way as Linux.

On Windows, the Cygwin build procedure is more like the Linux one.
However, the MinGW build is preferred, since the resulting executables
do not require the Cygwin DLLs and run faster.

3.1.1 Linux

For CsoundVST, you must con�gure the FLTK libraries to enable threads
(./configure �-enable-threads).

If you have properly installed all the dependencies mentioned above,
you can build Csound 5 and CsoundVST simply by opening a console,
changing to the csound5 directory, and executing the scons command.
To see the various con�guration options, execute scons -h.

3.1.2 Windows with Cygwin

The build procedure for Cygwin is identical to Linux. However, Cyg-
win comes with its own customized version of Python, while CsoundVST
uses the regular version of Python from http://www.python.org, which
is built with Microsoft Visual C++. Make sure to install SCons in the
Cygwin version of Python, and use that version for the build, even though
CsoundVST will use the Windows version of Python.

4 INSTALLING 4

3.1.3 Windows with MinGW and MSys

For MinGW, you may need to patch SCons as follows. Change line 51 of
SCons/Tool/mingw.py from:
cmd = SCons.Util.CLVar('$SHLINK', '$SHLINKFLAGS')

to:
cmd = SCons.Util.CLVar(['$SHLINK', '$SHLINKFLAGS'])

It is highly recommend that you update your MinGW installation from
the SourceForge site to the �current� level for core gcc, g++, binutils, utils,
and the Windows API headers and libraries.(w32api).

Rebuild and install a version of libsnd�le no earlier than:
http://www.mega-nerd.com/tmp/libsndfile-1.0.10pre4.tar.gz

For PortAudio, I have found that ./configure �-with-winapi=wmme
works and other configure options do not. If you can build PortAudio
version 19 with DirectX and MinGW, please let me know how to do it.

The build procedure for MinGW is similar, but not identical, to the
Cygwin procedure. The MSys shell does not allow the user to execute
Python commands directly. Therefore, you need to install the Windows
versions of Python and SCons, make sure that Python is in your Windows
executable path, and run the build like this:
$ python c:/tools/python23/scripts/scons

You will also need to customize the custom.py �le to declare to scons
the locations of required header �les and libraries, since on Windows there
is no standard location for these as there is on Unix and Linux.

4 Installing

Once you have either unpacked a binary distribution, or built Csound
from sources, you will need to install and con�gure Csound so that it will
run properly on your system.

4.1 Csound

Consult the Csound language documentation for instructions on how to
install and con�gure Csound.

4.2 CsoundVST

CsoundVST requires some additional con�guration:
1. Make sure that the Csound executables are in your PATH environment

variable.
2. OnWindows, make sure that the directory containing the _CsoundVST.dll

�le and all the Csound plugin opcodes is also in your PATH variable.
On Unix and Linux, make sure that the directory containing the
_CsoundVST.so �le and all the Csound plugin opcodes is in your
LD_LIBRARY_PATH environment variable. This variable may have a
di�erent name in di�erent operating systems.

5 EXTENDING 5

3. On all platforms, the directory containing the _CsoundVST shared
library and the CsoundVST.py �le must be in your PYTHONPATH en-
vironment variable, so that the Python runtime knows how to load
these �les.

5 Extending

Csound uses plugin unit generators. These are dynamic link libraries
(DLLs) on Windows, and loadable modules (shared libraries that are
dlopened) on Linux. It is relatively easy to extend Csound by writing
new unit generators in C or C++.

The following assumes you already know how to make a regular Csound
unit generator. If you don't, consult the Csound language documentation.
Supposing that your unit generator is named xxx, perform the following
steps:
1. Write your xxx.c and xxx.h �le as you would for a regular Csound

unit generator. Put these �les in the csound5/Opcodes directory.
2. #include "csdl.h" in your unit generator sources. This causes the

plugin development environment to emulate the regular Csound unit
generator development environment.

3. Add your OENTRY records and unit generator registration functions
at the bottom of your C �le. Example (but you can have as many
unit generators in one plugin as you like):

\#define S sizeof

static OENTRY localops[] = {
{ "xxx", S(XXX), 5, "a", "ao", (SUBR)xxxset, NULL, (SUBR)xxx}
};

/*
* The following macro from csdl.h defines
* the "opcode_size()" and "opcode_init()"
* opcode registration functions for the localops table.
*/
LINKAGE

4. Add your plugin as a new target in the plugin opcodes section of the
SConstruct build �le:

pluginEnvironment.SharedLibrary('xxx',
Split('''Opcodes/xxx.c
Opcodes/another_file_used_by_xxx.c
Opcodes/yet_another_file_used_by_xxx.c'''))

5. Run the Csound 5 build in the regular way.

6 USING 6

6 Using

Assuming that you have installed and con�gured the software, Csound
and CsoundVST can be operated in a variety of modes and con�gurations.
The .csd and .py �les in the examples demonstrate a few of these modes
of operation. Some of these scores are simple, others are moderately
complex.

You may need to edit the ��opcode-lib option in the Csound com-
mand in some of the .csd and .py �les to match your environment. Sim-
ilarly, you may need to edit the SoundFont �le paths in instrument def-
initions that use the fluid SoundFont 2 player opcode to match your
environment.

For real-time audio output, with or without MIDI control, you will
probably want to tune the kr and ksmps orchestra statements, and the
-b and -B command-line options, to give you the shortest possible la-
tency that does not cause clicks or stutters in Csound's audio output. For
example, with the Windows multimedia library build of the PortAudio
library, sr = 44100, kr = 441, ksmps = 100, -b100 and -B2000 give a
CD-equivalent audio sampling rate of 44,100 frames per second, a control
sampling rate of 441 control samples per second with 100 audio sample
frames per control sample, an audio output software bu�er size of 100
sample frames, and an audio output device hardware bu�er size of 2,000
sample frames, which yields an audio output latency of about 45 millisec-
onds � not fast enough for precise and expressive keyboard playing, but
fast enough for smooth control of e�ects or algorithmically generated or
triggered scores.

On Linux with ALSA, the audio output device should be selected using
a special form of the -odac option, for example -odac:plughw:0 for device
0. The plughw option translates Csound's audio output to the format
expected by the sound card. With ALSA, latencies of a few milliseconds
are possible, and expressive real-time instrumental performance should be
quite feasible.

6.1 Csound

6.1.1 The csound Command

The original method for running Csound was as a console program. This,
of course, still works. Running csound without any arguments prints out a
list of command-line options, which are more fully explained in the Csound
language documentation. Normally, the user executes something like
csound -W -omysoundfile myorchestra.orc myscore.sco or, to use the
single-�le Csound structured data (.csd) format, csound myscore.csd.

Csound can read and write sound�les (o�-line rendering), read and
write digital audio using a sound card (real-time rendering), read and
write MIDI �les, and read and write MIDI using a MIDI interface and
controller (real-time control). See the Csound language documentation
for more details.

6 USING 7

6.1.2 The Csound API

The Csound API consists of the Csound library (libcsound.a) and the
Csound header �le (csound.h). You can build Csound into your own
software very easily using this API. For example, the Csound command
itself is made this way:

#include "csound.h"

int main(int argc, char **argv)
{

// Create Csound.
void *csound = csoundCreate(0);
// One complete performance cycle.
int result = csoundCompile(csound, argc, argv);
if(!result)
{

while(csoundPerformKsmps(csound) == 0){}
csoundCleanup(csound);

}
// Destroy Csound.
csoundDestroy(csound);
return result;

}

6.2 CsoundVST

CsoundVST is a multi-function front end for the Csound API. CsoundVST
runs as a stand-alone graphical user interface to Csound, or as a VST
plugin in hosts such as the Cubase audio sequencer. CsoundVST provides
both a C++ and a Python API to Csound, and to a set of classes for
algorithmic composition.

CsoundVST contains a built-in Python interpreter. With Python, the
user can generate a score, import a MIDI �le, process notes, load and run
a Csound orchestra, and in general do anything that can be done either
with Csound or in Python.

You must de�ne the PYTHONPATH environment variable to include the
directory containing the _CsoundVST shared library and CsoundVST.py
script.

6.2.1 Standalone

To run CsoundVST as a stand-alone front end to Csound, execute
CsoundVST. When the program has loaded, you will see a graphical user
interface with a row of buttons along the top. Click on the Open... button
to load a .csd �le. You can also click on the Open... button and load
a .orc �le, then click on the Import... button to add a .sco �le. You
can edit the Csound command, the orchestra �le, or the score �le in the
respective tabs of the user interface. When all is satisfactory, click on the
Perform button to run Csound. You can stop a performance at any time
by clicking on the Stop button.

6 USING 8

6.2.2 The CsoundVST API

CsoundVST extends the Csound API with C++. There is a C++ class
for the Csound API proper, another C++ class for manipulating Csound
�les in code, and additional classes for algorithmic composition based on
music space. All these C++ classes also have a Python interface in the
CsoundVST Python extension module. For more information, consult the
Doxygen-generated �les in the csound5/doc directory.

You can build CsoundVST into your own software using the _CsoundVST
shared library and CsoundVST.hpp header �le. For example, the Csound-
VST stand-alone graphical user interface program is made this way:
#include <CsoundVST.hpp>
#include <CsoundVstFltk.hpp>

int main(int argc, char **argv)
{

CsoundVST *csoundVST = CreateCsoundVST();
AEffEditor *editor = csoundVST->getEditor();
editor ->open(0);
return 0;

}

There is also a high-level C API for CsoundVST, declared in
frontends/CsoundVST/csoundvst_api.h. Any program able to inter-
face with C calling convention functions can use this API. For exam-
ple, a Mathematica 5.0 notebook can use the .NET/Link package's
DefineDLLFunction to access the CsoundVST API to create an instance
of CsoundVST, load an orchestra, generate a score using the power of
Mathematica , and render that score.

6.2.3 Python scripting

You can use CsoundVST as a Python extension module. In fact, you can
do this either in a standard Python interpreter, such as Python command
line or the Idle Python GUI, or in CsoundVST itself in Python mode.

To use CsoundVST in a standard Python interpreter, import Csound-
VST.
import CsoundVST

Create an instance of CppSound, which provides an object-oriented
interface to the Csound API.
csound = CsoundVST.CppSound()

In a standard Python interpreter, run your script in the normal way.
You can load a Csound .csd �le and perform it:

To use CsoundVST itself as your Python interpreter, click on the
CsoundVST Settings tab, and select the Python check box in the Csound
performance mode box. Do not create a new CppSound object; Csound-
VST contains a built-in CppSound object that you must use.

The koch.py script shows how to use Python to do algorithmic com-
position for Csound. You can use Python triple-quoted string literals to
hold your Csound �les right in your script, and assign them to Csound:

6 USING 9

csound.setOrchestra('''sr = 44100
kr = 441
ksmps = 100
nchnls = 2
0dbfs = .1
instr 1,2,3,4,5 ; FluidSynth General MID
I; INITIALIZATION
; Channel, bank, and program determine the preset, that is, the actual sound.
ichannel = p1
iprogram = p6
ikey = p4
ivelocity = p5 + 12
ijunk6 = p6
ijunk7 = p7
; AUDIO
istatus = 144;
print iprogram, istatus, ichannel, ikey, ivelocityaleft, aright
fluid "c:/projects/csound5/samples/VintageDreamsWaves-v2.sf2", \\

iprogram, istatus, ichannel, ikey, ivelocity, 1
outs aleft, arightendin''')
csound.setCommand("csound --opcode-lib=c:/projects/csound5/fluid.dll \\

-RWdfo ./koch.wav ./temp.orc ./temp.sco")
csound.exportForPerformance()
csound.perform()

To run your script in Csound VST, click on the Perform button.

6.2.4 VST Plugin

The following instructions are for Cubase SX. You would follow roughly
similar procedures in other hosts.

Use the Devices menu, Plug-In Information dialog, VST Plug-Ins tab,
Shared VST Plug-ins Folder text �eld to add your csound5 directory to
Cubase's plugin path. You can have multiple directories separated by
semicolons.

Quit Cubase, and start it again.
Use the File menu, New Project dialog to create a new song.
Use the Project menu, Add Track submenu, to add a new MIDI track.
Use the pencil tool to draw a Part on the track a few measures long.

Write some music in the Part using the Event editor or the Score editor.
Use the Devices menu (or the F11 key) to open the VST Instruments

dialog.
Click on one of the No VST Instrument labels, and select _Csound-

VST from the list that pops up.
Click on the e (for edit) button to open the _CsoundVST dialog.
Click on the Open button to bring up the �le selector dialog. Navigate

to a directory containing a Csound csd �le suitable for MIDI performance,
such as csound/CsoundVST/examples/CsoundVST.csd. Click on the OK
button to load the �le. You can also open and import a suitable .orc and
.sco �le as described above.

7 LICENSES 10

Click on the VST Instruments dialog's on/o� button to turn it on.
This should compile the Csound orchestra. Note: If you don't compile the
orchestra, you won't be able to assign the plugin to a track.

In the Cubase Track Inspector, click on the out: Not Assigned label
and select _CsoundVST from the list that pops up.

On the ruler at the top of the Arrangement window, select the loop
end point and drag it to the end of your part, then click on the loop button
to enable looping.

Click on the play button on the Transport bar. You should hear your
music played by CsoundVST.

Try assigning your track to di�erent channels; a di�erent Csound in-
strument will perform each channel.

When you save your song, your Csound orchestra will be saved as part
of the song and re-loaded when you re-load the song.

You can click on the Orchestra tab and edit your Csound instruments
while CsoundVST is playing. To hear your changes, just click on the
CsoundVST Perform button to recompile the orchestra.

You can assign up to 16 channels to a single CsoundVST plugin. How-
ever, you can't have more than one CsoundVST plugin in the same song!

7 Licenses

7.1 Csound and CsoundVST

Csound is c©1991-2003 by Barry Vercoe and John �tch.
CsoundVST is c©2001-2004 by Michael Gogins.
Csound and CsoundVST are free software; you can redistribute them

and/or modify them under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either version 2.1
of the License, or (at your option) any later version.

Csound and CsoundVST are distributed in the hope that they will
be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with Csound and CsoundVST; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
1307 USA.

7.2 Virtual Synthesis Technology

Virtual Synthesis Technology (VST) PlugIn interface technology by Stein-
berg Soft- und Hardware GmbH.

CsoundVST source code contains modi�ed versions of source code �les
from the VST SDK distributed by Steinberg. These �les are to be used
only for building CsoundVST. You are not licensed to use these �les for
any other purpose. If you make a derived product based on CsoundVST
or the modi�ed VST source �les herein, you must apply to Steinberg for
your own license to use the VST SDK.

8 CONTRIBUTORS 11

8 Contributors

Csound contains contributions from musicians, scientists, and program-
mers from around the world. They include (but are not limited to):
• Allan Lee
• Barry Vercoe
• Bill Gardner
• Bill Verplank
• Dan Ellis
• David Macintyre
• Eli Breder
• Gabriel Maldonado
• Greg Sullivan
• Hans Mikelson
• Istvan Varga
• Jean Piché
• John �tch
• John Ramsdell
• Marc Resibois
• Mark Dolson
• Matt Ingalls
• Max Mathews
• Michael Casey
• Michael Clark
• Michael Gogins
• Mike Berry
• Paris Smaragdis
• Perry Cook
• Peter Neubäcker
• Peter Nix
• Rasmus Ekman
• Richard Dobson
• Richard Karpen
• Rob Shaw
• Robin Whittle
• Sean Costello
• Steven Yi
• Tom Erbe
• Victor Lazzarini
• Ville Pulkki

9 TO DO 12

9 To Do

This is a �to do� list, not necessarily complete, for Csound and Csound-
VST:

1. In preparation for a beta �le release package:
2. Complete this document su�ciently to get users started building

and running Csound and CsoundVST with MinGW and Linux.
3. Get MIDI input and output working better on Windows (that is, a

lower latency for PortAudio).
4. Longer term:
5. Gabriel's Python opcodes.
6. The Loris plugin opcodes.
7. The ATS opcodes.
8. The STK plugin opcodes.
9. Investigate the Python runtime situation on MinGW.

